خلود ميلاد سعد الرسي
عضو هيئة تدريس قار
المؤهل العلمي: ماجستير
الدرجة العلمية: محاضر
التخصص: تقنية معلومات - علم الحاسب
قسم الحاسوب - كلية التربية - الزنتان
المنشورات العلمية
Book Recommendation Systems: A Survey of Approaches, Techniques, Datasets, Evaluation Metrics, Challenges and Future Directions
Journal ArticleBook recommendation systems (BRSs) play a vital role in digital libraries, online bookstores, and e-learning platforms by assisting users in discovering relevant content from vast collections. Traditional methods, such as collaborative filtering (CF), content-based filtering (CBF), and hybrid techniques, have historically formed the foundation of BRSs; however, they suffer from limitations including the cold-start problem, data sparsity, and overspecialization. In recent years, deep learning–based approaches have emerged as powerful alternatives, leveraging architectures such as CNNs, RNNs, BERT, and Neural Collaborative Filtering (NCF) to capture complex user–item interactions and support multimodal integration. This survey is the first to systematically review book recommendation systems published between 2020 and February 2025, filling a critical gap left by earlier studies that did not comprehensively examine this recent period of accelerated research. The paper introduces a novel taxonomy of BRSs that classifies systems according to methodological foundations, approaches, datasets, and evaluation metrics, while also identifying recurring challenges and emerging trends. The findings reveal a clear methodological transition from similarity-driven approaches to neural representation learning, reflecting the increasing demand for intelligent, scalable, and adaptive solutions. Traditional methods, however, remain essential as baseline models for benchmarking and comparative evaluation.
Khlood Melad Saed Alrassi, (09-2025), Malaysia: International Journal of Contemporary Computer Research (IJCCR),, 2
Review Paper on Recommendation Systems: Different Methods and Techniques
Journal ArticleThe rapid growth of digital content has intensified the problem of information overload, making it challenging for users to access relevant resources. Recommender systems (RSs) address this issue by filtering data and providing suggestions, thereby improving decision-making and user satisfaction. This paper presents a comprehensive review of recommender systems (RSs), with particular emphasis on their methods, techniques, benefits, history, and applications. It examines traditional approaches, including collaborative filtering, content-based filtering, and hybrid strategies, before providing a classification of deep learning models in recommender systems and analyzing their impact on enhancing RS capabilities. In addition, the paper discusses evaluation methods used to assess recommendation performance and highlights their roles in measuring system effectiveness. Finally, it synthesizes the key challenges confronting recommender systems, including data sparsity, scalability, and cold-start issues.
Khlood Melad Saed Alrassi, (01-2025), Malaysia: International Journal of Contemporary Computer Research (IJCCR), Vol.1 Issue.1, 1
معرفة مدى استخدام أعضاء هيئة التدريس في جامعة الزنتان لتقنيات التعليم الإلكتروني
مقال في مجلة علميةتهدف الد راسة إلى معرفة مدى استخدام أعضاء هيئة التدريس في جامعة الزنتان لتقنيات التعليم الإلكتروني. اشتمل مجمتمع الدراسة على جميع اعضاء هيئة التدريس القارين بالجامعة خلال العام الجامعي 2019-2020,اختيرت منهم عينة عشوائية بلغت 135 عضو هيئة تدريس , وتم استخدام المنهج الوصفي التحليلي ,حيث صممت استبانة تتكون من 36 فقرة و اربع محاور وقد طبقت الكترونيا بعد التحقق من صدقها و ثباتها .
خلود ميلاد سعد الرسي، سعاد المهدي أحمد ديرة، (03-2021)، الزنتان: مجلة افاق المعرفة، 1