ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335692031

Enhancing hadoop performance in homogeneous big data environment
assuming configuration of dynamic slots in map-reduce pattern

Article - January 2018

DOI: 10.14419/ijet.v7i4.26962

CITATION READS
1 204

5 authors, including:

;(ﬁj_ Abolgasem MOHAMED Enfais Adam Amril Jaharadak
ﬁ University of Zawia ; Management and Science University
2 PUBLICATIONS 1 CITATION 35 PUBLICATIONS 528 CITATIONS
SEE PROFILE SEE PROFILE

Abdulbasat Alsusaa
% University of Benghazi
5 PUBLICATIONS 1 CITATION

SEE PROFILE

All content following this page was uploaded by Abdulbasat Alsusaa on 09 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335692031_Enhancing_hadoop_performance_in_homogeneous_big_data_environment_assuming_configuration_of_dynamic_slots_in_map-reduce_pattern?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335692031_Enhancing_hadoop_performance_in_homogeneous_big_data_environment_assuming_configuration_of_dynamic_slots_in_map-reduce_pattern?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abolgasem-Enfais?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abolgasem-Enfais?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Zawia?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abolgasem-Enfais?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adam-Amril-Jaharadak?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adam-Amril-Jaharadak?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Management_and_Science_University?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adam-Amril-Jaharadak?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdulbasat-Alsusaa?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdulbasat-Alsusaa?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Benghazi?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdulbasat-Alsusaa?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdulbasat-Alsusaa?enrichId=rgreq-8cd83a6572a2b4081cbd7a7f48fe0376-XXX&enrichSource=Y292ZXJQYWdlOzMzNTY5MjAzMTtBUzo4MDExNjUxMjYxNDgwOTlAMTU2ODAyNDA1OTY1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

International Journal of Engineering &Technology, 7 (4) (2018) 6986-6990

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
doi: 10.14419/ijet.v7i4.26962
Research paper

SPC

Enhancing hadoop performance in homogeneous big data
environment assuming configuration of dynamic
slots in map-reduce pattern

Abolgasem M. Ali Enfais ' *, Adam Amril Jaharadak !, Amad Abdelkarim
El Marghani !, Abdulbasat Saleh Alsusaa 2

! School of Graduate Studies, Management and Science University (MSU), Shah Alam, Selangor, Malaysia
2 Faculty of Arts & science, Benghazi University, Kufra , Libya
*Corresponding author E-mail: gsooma77@gmail.com

Abstract

Hadoop is a Java-based programming framework that supports the storing and processing of large data sets in a distributed computing
environment and it is very much appropriate for high volume of data. It uses HDFS for data storing and uses MapReduce for processing
that data. MapReduce is a popular programming model to support data-intensive applications using shared-nothing clusters. The main
objective of MapReduce programming model is to parallelize the job execution across multiple nodes for execution. Nowadays, all focus
of the researchers and companies toward to Hadoop. Due to this, many scheduling algorithms have been proposed in the past decades.
There are three important scheduling issues in MapReduce such as locality, synchronization and fairness. The most common objective of
scheduling algorithms is to minimize the completion time of a parallel application and also achieve to these issues. Performance issues
are introduced for Hadoop schedulers, and comparative performance analysis between different cases of jobs submission. These jobs are
processed in different homogenous data environment and, under fixed or reconfigurable slot between map and reduce tasks for Hadoop
MapReduce java programming clustering model. The results showed that when assigning tunable knob between map and reduce tasks
under certain scheduler like FIFO algorithm, the performance enhanced 16.66% in inverted index, 55.55% in word count and 11.76% in

classification process.

Keywords: Hadoop; Mapreduce; Parallel Processing; Scheduling Algorithms; Homogeneous Data.

1. Introduction

Hadoop recently appear as the most interesting open-source soft-
ware platform utilized for distributed storage and parallel pro-
cessing of big data by using the MapReduce programming model.
Big data can be identified mainly in three parameters which they
are complexity, volumes and dynamicity. For complexity parame-
ters, this can make sense when it is understood that the generated
data in recent modern scenarios are coming from different sources
and different formats, it can be text, audio, videos, symbols or
numbers which are different extensions and format. Obtained
images through imaging systems are considered as degraded ver-
sions of the original view. CT images have different types of deg-
radations such as noise, blur and contrast imperfections [1]. Data
loss at the acquisition time and other technical reasons must be
considered. The fastest way to deblur an image is by convolving a
special kernel to the corrupted image. Laplacian kernels are fa-
mous and widely used in this field [2]. Some authors considered
the Laplacian sharpening filter and the iterative Richardson — Lu-
cy algorithm, and implemented a mixture of these two techniques
to process the CT medical images which reflects the amount of
data used to treat it [1]. Additionally, the point spread function
(PSF) is one of the essential factors that needed to be calculated,
since it will be employed with different types of deblurring algo-
rithms like Richardson — Lucy and its optimized version, Van
Cittert and its enhanced version, Landweber, Poisson Map, and

Laplacian sharpening filters [8]. All of these models with used
algorithms reveal the extent of data that system shall process it per
image.

It is clearly that, dealing with such unstructured data will impose
huge complexity for purpose of analysis and data mining. There
should be efforts as preprocessing to make such data more uni-
formed in order to make pattern recognition feasible. For the pa-
rameter describing the big data regarding its volume, the volume
and the size of the data are increased rapidly and dynamically
spontaneously in real-time. This can be clear if we imagine that, in
modern scenarios of medical data collection to support personnel
health records and monitoring health status remotely, the data are
collected by different sensors for different health parameters such
as heart rate, blood pressure, body temperature and glucose levels,
all these data are collected simultaneously and in parallel in one
database center for further analysis to send certain patterns recog-
nition or trend analysis as a results for end-user to allow him mon-
itor his health conditions. In this case the data is growing exponen-
tially in size and volume and dynamically in real-time with differ-
ent format and structure. In the centralized management efforts of
the big data analysis, another added complexity factor is repre-
sented as the data can come from different distributed sources and
many cases from heterogeneous sources.

This paper is focusing in reducing the workload of the Hadoop
processing jobs (we refer it also to same meaning as Makespan),
by adjusting the ratio between map and reduce for optimal mini-
mum number to achieve the different tasks in homogenous data

Copyright © 2018 Abolgasem M. Ali Enfais et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology

6987

clustering, finally to answer different end-users enquiries. In a
Hadoop system, the incoming jobs can be either homogeneous or
heterogeneous with respect to various features such as number of
tasks, data and computation requirements, arrival rates, and execu-
tion times. Also, Hadoop resources may differ in capabilities such
as data storage and processing units. The assigned priorities and
minimum share requirements may differ between users. Moreover,
the type and number of jobs assigned by each user can be differ-
ent. As the mean execution time for a job, reflects the heterogenei-
ty of both workload and cluster factors.

Borase & Banait, (2015) looked in the various clustering algo-
rithms prevailing in order to cluster the data available with the
cloud in a homogeneous way. Furthermore, the dispute examined
with this research was the scalability of the procedure that was
capable of processing information existing in big data. Hence,
defined a strategy to resolve the issue prevailing in with an en-
hanced Density-based spatial clustering of applications with noise
(DBSCAN) methodology. In general, the DBSCAN mechanism
was capable of identifying the homogeneous data in an effectual
way and for now, it was improvised to handle data available in big
data along with its scalable nature. Grouping datasets disseminat-
ed in a vast spatial manner was accomplished with an efficacy.
The boundaries confined in mitigating the entry of irrelevant data
into a significantly associated cluster was proficiently devised
with this approach. Hence, the clusters were formulated in a high-
ly homogeneous way. The scalability realized with the mechanism
devised was also better than other former techniques [7].

Issa, (2015) purported that in recent years, the demand for cloud
computing has increased exponentially. This is due to an increas-
ing demand in storing, processing and retrieving a large amount of
data in a cloud cluster. The data can be either stored to a cloud
network such as scientific data (i.e. Climate modeling, Fusion,
Bioinformatics...etc) or use the cloud network for data-intensive
tasks such as collecting experimental data, dumping data on paral-
lel storage systems, run large scale simulations...etc. Hadoop was
introduced as a solution to handle processing, storing and retriev-
ing Big Data in a cloud environment. It is important for processor
architects to understand what processor micro-architecture param-
eters that affect performance. It is also important for benchmark
developers to optimize the benchmark software for a given hard-
ware to achieve maximum performance possible [9].

Faizal, Christopher & Issac, (2018) reported that the Cloud ability
to share information, substance and provides certain services to
the people connected through the network. The Map Reduce
framework in a cloud is an open source implementation, Hadoop
have become the defect platform for scalable analysis on large
data sets. The current Hadoop only allows static slot configura-
tion, i.e., fixed numbers of map slots and reduce slots throughout
the lifetime of a cluster. Found that such a static configuration
may lead to low system resource utilizations as well as long com-
pletion length. Motivated by this, propose simple yet effective
schemes which use slot ratio between map and reduce tasks as a
tunable knob for reducing the make span of a given set. By lever-
aging the workload information of recently completed jobs, our
schemes dynamically allocates resources (or slots) to map and
reduce tasks [3].

Hadoop is an open source framework with three main compo-
nents: MapReduce, HBase and Hadoop Distributed File System
(HDFS). HDFS is the primary storage for Hadoop; it is highly
reliable and uses sockets for communications. The HDFS is hori-
zontally scalable and each cloud cluster consists of a single
NameNode and DataNode. The NameNode job acts like a master
server that manages the file system namespace which in turn man-
ages access to files by clients. The DataNode manages storage
attached to a node that they run on. DataNodes process server
reads, write requests, block creation, and replication. HDFS is for
batch processing not serving random read or write requests. The
HBase is considered the Hadoop database for distributed big data
storage, but the two main components of Hadoop are HDFS which
is horizontally scalable with a default setting of three copies for
storage and MapReduce which is parallelized scalable for compu-

tation framework. Hadoop framework consists of several applica-
tions developed using MapReduce framework; one of these appli-
cations is WordCount. MapReduce is a programmable framework
for pulling data in parallel out of a cluster. Parallel processing is
when a program executes multiple code paths simultaneously for a
massive amount of data. In this paper, we present a detailed per-
formance and power sensitivity analysis for Hadoop WordCount
using different processors such as Intel’s ATOM D525, Xeon
X5690, and AMD’s BobCat E-350.

Verma & Sahu, (2018) reported that clustering as a result of the
rapid development in cloud computing to investigate the perfor-
mance of extraordinary Hadoop MapReduce purposes and to real-
ize the performance bottleneck in a cloud cluster that contributes
to higher or diminish performance. It is usually primary to re-
search the underlying hardware in cloud cluster servers to permit
the optimization of program and hardware to achieve the highest
performance feasible. Hadoop is founded on MapReduce, which is
among the most popular programming items for huge knowledge
analysis in a parallel computing environment [4].

Lin, Chen & Cheng, (2013) presented a check pointing methodol-
ogy for enhancing the fault tolerance in Hadoop clusters. Slow
tasks in the map tasks were detected by means of implementing a
technique based on revised condition. Mappers were responsible
for generating partial outcomes and those results were also ar-
chived by the mechanism devised. The progress rates of varied
tasks in an inconstant nature were studied. The projected approach
was segregated into three different phases that were given by de-
tection of slow tasks. Longest Approximate Time to End Variable
Progress Rate (LATE-VPR) scheduler was designed to become
accustomed to the tasks comprising of a diverse rate of progress in
real-time. Progress Rate of each and every task was assessed with
fulfilling the purpose of picking up the instantaneous progress of
the tasks [5].

A standard threshold was predefined to discriminate between the
earlier completion and delayed stage of task completion so as to
manage them in a differed way. A task that was executed right
from the scratch under a speculative execution possibly be delayed
in a peculiar circumstance of its late stage. Hence, there was no
fruitful reaction was acquired over minimizing the response time
of the job concerned at the time proximate to its completion. At
this juncture, the comparatively better option was to adapt with
slow running tasks than allocating a new task into the scheduler.

2. Methodology

The homogeneous system is defined as the homogeneous charac-
teristics of both workload and cluster. Based on the job sizes, the
homogeneous system is classified into two such as homogeneous-
small and homogeneous-large. If all the jobs are small, then the
system is defined as homogeneous-small. If all the jobs are large,
then the system is classified as homogeneous-large. Mostly, the
job size parameter has affected the performance of Hadoop
Schedulers. The average completion time of all schedulers is al-
most equal. As the cluster and workload are homogeneous, the
COSHH algorithm suggests all resources as the best choice for all
job classes. The two conditions are used to develop homogeneous
computing environment.

e The same storage representation along with the same results
are considered as a correct one in hardware and software
module of processor for operations on floating point num-
bers.

e The correct floating point value is transmitted and guarantee
is provided to the communication layer during the process
of floating point number between processors.

The module involved in the homogeneous phase is described as a
flow diagram in Figure 1. The five representation of data-
analyzing Hadoop benchmarks is described in the Heterogeneous
phase as a module for makespan and slot configuration prediction.
The benchmarks are derived from MapReduce Benchmarks Suite
which is described below.

6988

International Journal of Engineering & Technology

e Inverted Index — Consider text documents as input to gener-
ate word as document indexing.

e Histogram Rating — Consider the movie rating data as input
to calculate a histogram of input data.

e Word Count — Consider text documents as input to count
the occurrence of each word

e Classification — Deliberate the movie rating data as input to
classify the movies into predefined clusters

o Grep — take text documents as input and search for a pattern
in the files.

Homogeneous Phase

.‘_

Inverted Text

—

Word Count

—

Classification

Fig. 1: Flow Diagram of Homogeneous Environment.
2.1. Inverted index

During map task, the system emits <word, docld> tuples with
each word emitted once per docld. During reduce tasks, the sys-
tem joints all tuples on key <word> and produces <word, list (do-
cld)> tuples as an output after removing duplicates. The input
format of an inverted index is any web document in text/XML
format and the output format is represented as <word> <docld>.

2.2. Histogram rating

Based on the average ratings of movies, bin the movies into 8 bins
each with a range of 0.5. The input is of the form <rater_id, rating,
date> and the file name is movie_id. During the process of map
tasks. The system calculates the average rating for a movie, identi-
fies the bin, and produces <rating,1> tuples. During the process of
reduce tasks, the jobs collect all the tuples for a rating and produce
a <rating,n> tuple as an output. The input format of histogram
rating is denoted as {movie_id:userid1_ratingl userid2_rating2,..}
and the output format is represented as <rating>
<num_of _user_reviews>.

2.3. Word count

Map-Reduce have become an important platform for a variety of
data processing applications. Word Count Mechanisms in Map-
Reduce frameworks such as Hadoop, suffer from performance
degradations in the presence of faults. Word Count Map-Reduce,
proposed in paper presented by Jaiswal & Bhatt (2017), provided
an online, on-demand and closed-loop solution to managing these
faults [6]. The control loop in word count mitigates performance
penalties through early detection of anomalous conditions on slave
nodes. Anomaly detection is performed through a novel sparse-
coding based method that achieves high true positive and true
negative rates and can be trained using only normal class (or
anomaly-free) data. The local, decentralized nature of the sparse-
coding models ensures minimal computational overhead and ena-
bles usage in both homogeneous and heterogeneous Map-Reduce
environments. Actually, the managed and processed data were
comparable in simulation to Verma & Sahu (2018) model, in

which they depended on basic data similar to health data, for in-
stance word count Word count is a typical example where Hadoop
map reduce developers start their hands on with [4]. This sample
map reduce is intended to count the no of occurrences of each
word in the provided input files.

Map emits <word,1>tuples with the same word emitted from the
document. Reduce task adds the word count for a given word from
all map tasks and outputs the final count. The input format of an
inverted index is any web document in text/XML format and the
output format is represented as <word><count>.

2.4. Classification

It classifies the input data into k-determined clusters and the cen-
troids value in the cluster are fixed. The classification process uses
movie rating data which is of the form <movie_id,
list{rater_id,rating}>. The cosine vector similarity is computed in
the classification of a given movie with the centroids. Then, the
closest movie to the centroid value is determined. The centroid
and movie id is emitted in the map rather than emitting the details
of movie ratings. Here, further iteration is not included to under-
stand the movie details. The collected movies in a cluster are emit-
ted as <centroid_id, movie_id> which is performed in reduce sec-
tion. The input format of classification is represented as {mov-
ie_id:userid_ratingl, userid2_rating2,...} and the output format is
<centroid_id, movie_id>.

2.5. Grep

During the mapping process in MapReduce framework, the pat-
tern <regex,1> tuples are obtained as output lines. During the re-
duce tasks, the counts are added and emit the output as <re-
gex,n>tuples. The input format of grep is a web document in
text/ XML format.

Simulation Model for Homogenous Environments demonstrated
in figure 2, these are the categorized work flow of specified ho-
mogenous simulation work environment.

Job Submission

Inverted Index Word Count Classification
. HDFS loading Data loading to
L L2 with count HDFS
Resource .
Evaluation utilization cu?r:s?tg:fon
analysis p

Classification
analysis

Fig. 2: Homogenous Simulation Environment.

By selecting the corresponding job based on the user favor and
convenience, the work environment of homogenous cluster varies.
e In the inverted index job function, there exist two corre-
sponding organized fields dealing with the Line Index fol-
lowed by the evaluation.

International Journal of Engineering & Technology

6989

e In the word count job submission, it comprises the HDFS
Server loading along with the count receives high priority
and resource utilization analysis.

e In the classification job submission, the procedures which
are followed is listed as, data loading to HDFS, distance
computation and classification analysis.

The following steps explain about the implementation of configu-
ration under homogenous environments.

Self-adjusting slot configurations for homogeneous Hadoop clus-
ters, then homogenous clusters selection, after that, user job sub-
mission in Homogenous environment. Inverted Index Job submis-
sion

The user jobs comprises of set of jobs namely

e Inverted Index

e Word count

e Classification.

The choosing Inverted Index option, and selecting Makespan and
Resource Utilization.

As shown in figure 3, it is clear that the inverted index takes less
makespan time when compared with existing system. The graph is
generated based on the count values, which was 15000 of inverted
index on previous system and 9000 of existing system.

Enhancement percentage = 9000/100% = 15000/x
X=16.66 %

15000+ ©

12,500

10000+

Makespan

7500+

5,000

2500+

Makespan I

|LFor Invertad Index M ExistingSystem

Fig. 3: Makespan Comparison for Inverted Index of Previous And Exist-
ing System.

Then applying the mentioned steps to calculate Word count job
enhancement and to make comparison of word count over existing
system as denoted on figure 4:

MS for existing—MS for WC
MS for existing

%X 100
Percentage of Improvement=

=9000-4000 x100
9000

=55.55%

| £ Bar Chart

@000 1

8,000 7

e —
I ——

5,000

Makespan

4000 1
3000 1
2000 1

1000 1

p L= - -
Makespan

|I ForwWord Count = ExistingSystem| ﬂ

Fig. 4: Comparison of Word Count between Previous and Existing Sys-
tem.

Finally evaluating Classification Job in Homogenous environ-
ment. After loading of selected files into HDFS, processing Clas-
sification using machine learning technique, then analysis in Clas-
sification Job.

To clarify the improvement shown in figure 5 by percentage, the
following equation deduct it:

Percentage of Improvement= (MS for existing-MS for classifica-
tion) / (MS for existing) x100

% = 8500 — 7500 / 8500 * 100 = 11.76 %

| & Bar Chart

s000 4
7000 4
8000+

5000+

Makespan

4000 1
3000+

2000 4

1,000 4

|l For Classification in Hadoop ExistingSysteml ﬂ

Fig. 5: Comparison of Makespan between Classification in Hadoop and
Existing System.

3. Discussion and conclusion

Big and parallel data analysis for mining, knowledge extraction,
and pattern recognition has become now in critical demands for
modern data processing in many fields such as medical fields,
banking fields, social media networks and others. The aim is al-
ways to reach to accurate data classification, prediction in opti-
mized performance of decreased time processing and increased
resources’ utilization.

Hadoop Apache open-source platform is recently considered the
most promising architecture of implementation for efficient big
data processing loaded from distributed heterogeneous resource
then, processing these data by classifying them in homogenous or
heterogeneous clusters. The core architecture part of the Hadoop is
the MapReduce programming model where a big block of data are
divided in smaller ones and assigned for different servers for pro-
cessing and then collected back again. This job is handled in each
master node in typical cluster and tasks assigned to each slave
node. The jobs are queued and made ready for processing by dif-
ferent scheduling algorithms. The main concern in performance

6990

International Journal of Engineering & Technology

evaluation of the Hadoop architecture is the workload as in some
cases the jobs can be stuck and resulting in unexpected delay of
the time for processing and increased processor and memory con-
sumption. Fixing the slot configuration or the number of map and
reduce tasks seems to be not desirable as the previous studies
showed that the static slot configuration for fixed number or ratio
between and the map and reduce in certain scheduling algorithm
tend to increase the makespan or the workload as well as decreas-
es the utilization of the resources.

Therefore, enhancing Hadoop performance in homogeneous big
data environment assuming configuration of dynamic slots in
map-reduce pattern resulted in improvements of processing time
as well as operated processes. Which means by numbers that Ha-
doop enhanced by 16.66% in case of inverted index, the word
count is 55.55% more efficient than the existing system and from
the previous results too, Hadoop enhanced by 11.76% in classifi-
cation option.

References

[1] Al-Ameen, Z., Sulong, G., Gapar, M. D., & Johar, M. D. (2012).
Reducing the Gaussian blur artifact from CT medical images by
employing a combination of sharpening filters and iterative deblur-
ring algorithms. Journal of Theoretical and Applied Information
Technology, 46(1), 31-36.

[2] Al-Ameen, Z., Sulong, G., & Johar, M. G. M. (2012). Fast deblur-
ring method for computed tomography medical images using a
novel kernels set. International Journal of Bio-Science and Bio-
Technology, 4(3), 9-19.

[3] Faizal, M. M., Christopher, P., & Issac, A. J. (2018). Self-Adjusting
Slot Configurations for Hadoop Clusters Using Data Security In
Cloud. Self, 5(04).

[4] Verma, K., & Sahu, K. (2018). Implementation of big-data applica-
tions using map reduce framework.

[5] Lin, C.Y., Chen, T. H., & Cheng, Y. N. (2013, December). On im-
proving fault tolerance for heterogeneous hadoop mapreduce clus-
ters. In cloud computing and big data (cloudcom-asia), 2013 inter-
national conference on (pp. 38-43). IEEE.
https://doi.org/10.1109/CLOUDCOM-ASIA.2013.83.

[6] Jaiswal, N., & Bhatt, M. (2017). Big-data application using the
mapreduce framework.

[7] Borase, S. D., & Banait, S. S. (2016). Dimensionality reduction us-
ing clustering techniques.

[8] Al-Ameen, Z., Sulong, G., Johar, M. G. M., Verma, N., Kumar, R.,
Dachyar, M., & Singh, S. (2012). A comprehensive study on fast
image deblurring techniques. International Journal of Advanced
Science and Technology, 44.

[9] Issa, J. A. (2015). Performance evaluation and estimation model
using regression method for hadoop WordCount. IEEE Access, 3,
2784-2793. https://doi.org/10.1109/ACCESS.2015.2509598.

https://doi.org/10.1109/CLOUDCOM-ASIA.2013.83
https://doi.org/10.1109/ACCESS.2015.2509598
https://www.researchgate.net/publication/335692031

