
2021
Vol. 9 No. 9: 112

iMedPub Journals
http://www.imedpub.com

Review Article

1© Under License of Creative Commons Attribution 3.0 License | This article is available in: http://colorectal-cancer.imedpub.com/archive.php

American Journal of Computer
Science and Information Technology

Evaluating Efficiency of Some Exact String-
Matching Algorithms on Large-Scale Genome

Abstract
Exact string-matching algorithms have become very supreme in many
bioinformatics tools. Despite the abundance and diversity of such algorithms,
exposing them to real-time experimental analysis has been critical. This study was
conducted to evaluate the efficiency of ten exact-string matching algorithms on
large-scale genomic sequences from a runtime perspective. To define the most
efficient algorithms are qualified to handle the short alphabet used for nucleic
acid coding.

The methodology promoted for this study was the factorial experiment with
Randomized Complete Block Design (FRCBD). Under influence of four independent
parameters, four levels of pattern lengths, four levels of pattern indices, two levels
of programming languages, and ten levels of algorithmic architecture. The yield
of the tested algorithms was calculated in nanoseconds. One-way ANOVA and
Two-way ANOVA tests with post-hoc Games-Howell test were used separately for
statistical analysis. In this study two widely accepted programming languages, C#
and JAVA were used to speculate the possible effect of programing language on
algorithm performance.

The One-way ANOVA results revealed that the Backward-Oracle-Matching (BOM),
Zhu-Takaoka (ZT), and Horspool's (HP) algorithms exhibited the highest final
performance correspondingly. These algorithms have demonstrated an efficiency
of up to 250% higher than other algorithms. The results of two-way ANOVA
revealed a significant interaction between programing language adopted and
execution time with the absence of pattern lengths and pattern index effect. The
combination of the C# programing language and the Backward-Oracle-Matching
algorithm produced the most effective performance on genomic sequences.

Keywords: Exact-string matching algorithm; Factorial design; One-way ANOVA;
Two-way ANOVA; Games-Howell test

Osamh Alrouwab1*, Dheba
Mansour2 and Mahmoud
Gargotti3

1Department of Biochemistry, Faculty of
Medicine, University of Zawia, Zawia,Libya
2Department of Zoology, Faculty of Sciences,
Aljafra University, Almamura, Libya
3Faculty of Medicine, Department of
Microbiology, University of Zawia, Zawia,
Libya

Corresponding author:
Osamh Alrouwab, Department of
Biochemistry, Faculty of Medicine,
University of Zawia, Zawia, Libya

 usamaerawab@gmail.com

Citation: Alrouwab O (2021) Evaluating
Efficiency of Some Exact String-Matching
Algorithms on Large-Scale Genome. Am J
Compt Sci Inform Technol Vol.9 No.9: 112.

Introduction
Admittedly, string-matching is an essential problem-solving
technique, encountered by specialists from various disciplines e.g.
Data mining, artificial intelligence, and Bioinformatics [1]. Oodles
of algorithms and methods have been announced for pattern
recognition, and there are abundant applications and online
servers that can achieve precise string matching on biological
data [2]. The methodologies that endorse the recognition of
the patterns contrast greatly, owing to the obvious variations in
algorithmic architecture [3]. Generally, string matching algorithms
could be broadly classified into five distinct classes: (a) algorithms
used to resolve the problem by character comparisons, (b)
algorithms that depend on the use of automatic probabilistic
simulation, (c) non-probabilistic simulation algorithms, (d)
constant-space algorithms, and (e) real-time algorithms [4].
The more traditional and the humblest match approach are to

equate the pattern characters with the characters in the target
text. This implementation was offered by the so-called Naïve
or Brute-Force algorithm [5]. Text or pattern has not been pre-
processed by this algorithm. Its time complexity in the worst
case is O (nm), where m and n apply to pattern and text length
correspondingly. Subsequently, numerous algorithms have made
formidable enhancements on Brute-Force time scheming. The
worst-case, lower bound of the string-matching problem is O (n).
The first algorithm to reach the bound was given by Morris and
Pratt in the early [6] later improved by Knuth. Linear algorithms
that are based on bit-parallelism were announced by Baeza-Yates
and Manber Xian-Feng et al. presented the KMPBS algorithm, a
hybrids algorithm based on Boyer–Moore (BM) and The Knuth-
Morris-Pratt (KMP) algorithm. The text T is scanned from left to
right for the given pattern P of length m. When searching, the very
last character of P is compared to the corresponding character

Received: September 24, 2021; Accepted: October 08, 2021; Published: October 15, 2021

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php2

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

of text T, and the KMP algorithm is then used to compare the
remainder of the characters if there is a match [7-29]. Cao et al.
[7] formulated a character-based string matching algorithm that
computes the statistical likelihood of each English letter in the
pattern string based on its unique position in the pattern string. To
calculate the mathematical likelihood and dynamic condition of
each character in the pattern string, the suggested methodology
utilizes optimization based on a high decision. Hakak et al.
announced a novel exact-string matching methodology published
in a research paper entitled "A new split based searching for
exact pattern matching for natural texts"[8-10]. In this technique,
the assigned pattern is split into two chunks. To enhance the
search strategy, only the second chunk of the pattern is searched
using a brute-force methodology against the given text. When
the second chunk of the pattern is detected, the first chunk
of the pattern is directly mapped based on the location of the
second chunk. The number of biology texts-based info collected
these days is generally increased at a pace rising [11]. Hence,
the answer to the question, what is the algorithm that can be
relied upon from the perspective of reliability and productivity
among this tremendous momentum of available algorithms
become an imperative necessity. The methodology espoused
for this experiment was the so-called Factorial experiment with
FRCBD, to cope with the interaction between the predetermined
factors [12]. This experiment was contemplated while building
the Bioinformatics library. The question then what is the most
suitable exact string-matching algorithm for invoking biological
data. Due to time constraints at that period, the Boyer–Moore
algorithm was implemented and that it was not possible to make
a comparison between the algorithms. Strategically, the roadmap
for this study was to assess the productivity and effectiveness of
some exact-string matching algorithms from a time-consuming
outlook. For reliability, four independent factors were adapted,
namely the length and the index of the pattern, the algorithm type
and the programing language. To estimate the anticipated effect
of those factors on the performance of each algorithm separately
under the same experimental conditions [13]. Finally, the resulted
data interpreted statistically in an accurate and unbiased manner.
More specifically, in the current study six hypotheses were
examined: (a) Hypothesis 1: All the algorithms have equal run
time on average, (b) Hypothesis 2: pattern length does not affect
searching speed on average. (c) Hypothesis 3: Algorithm type and
pattern length are independent or the real impact of interaction
is not prevalent, (d) Hypothesis 4: pattern position does not affect
searching speed on average, (e) Hypothesis 5: Algorithm type and
pattern position are independent or the real impact of interaction
is not prevalent, (f) Hypothesis 6: programing language does not
affect searching speed on average. The main goal of this paper
is to evaluate the performance of some exact-string matching
algorithms in terms of processing time, as well as to measure
the impact of some factors that may affect the search result on a
limited alphabet used to encode Deoxyribonucleic Acid [14].

Materials and Methods
System participants
The dataset: The data on Clostridium botulinum strain
DFPST0029 chromosome (accession ID: NZ_CP028842), has been
retrieved from online, publicly accessible databases, the Entrez
Gene databases from The National Center for Biotechnology
Information, during January 29, 2021. The FASTA sequence file
was equipped with 3858511 DNA base-pair and used as target
text [15].

Search patterns: Sixteen randomized pattern groups were
configured to represent the contrast in position and length
levels to simulate realistic algorithm operating conditions (Table
1). Firstly, to investigate the impact of sequence length on the
profitability of the algorithm, the length was subsequently
extended four times. The mean of the pattern length was 3500
(SD=3341.66). Lastly, to gauge the influence of the pattern site on
algorithm run time, the pattern length was set to four positions
that represented the topographic regions of the target text. The
mean of the pattern position was 921542.60 (SD=994136.98)
[16].
Table 1: Pattern sets.

Position ID Position Index Length ID Pattern length
P1 0 L1 500 b.p
P2 286170 L2 1500 b.p
P3 1200000 L3 4000 b.p
P4 2200000 L4 8000 b.p

Software and operating system
The benchmarks have all been performed on Intel (R) Core (TM)
i5-3470 CPU; 3.20 GHz and 16 GB DDR3 RAM. The operating
system used for the benchmarks was Microsoft Windows 10 64-
bit. Two compilers were recruited to measure the anticipated
effect of the programing language on algorithm execution time.
The C# from Microsoft using NET Framework 4.5.2 and JAVA(™)
SE Development Kit 11.0.9 (JDK 11.0.9) from Oracle Corporation
[17].

Measurements
Bio-statistical experimental design: The study was established
in a Factorial randomized complete block design fashion. All
algorithms were subjected to uniform conditions in terms of the
input sequence, the patterns, and the hardware [18]. The design
of the experiment encompassed four independent factors: the
programing language (two levels; C# or JAVA); the exact string-
matching algorithm used to detect search pattern (ten levels;
Brute Force, Backward-Oracle-Matching, Raita, Horspool’s, Rabin
Karp, Berry-Ravindran, Zhu-Takaoka, Simon, Maximal-Shift or
Two-Way Algorithm); the pattern position (four index levels;
P1=0, P2=286170, P3=1200000 or P4=2200000); and pattern
length (four levels; L1=500 b.p, L2=1500 b.p, L3=4000 b.p or
L4=8000 b.p) resulting in a total of three hundred and twenty
possible treatment combinations (N=320). Execution time for
each algorithm measured in nanoseconds was assigned as the
dependent response variable (Figure 1).

2021

© Under License of Creative Commons Attribution 3.0 License 3

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

Statistical analyses of the data: All statistics were performed
using the IBM SPSS 22 statistical package. To eliminate system
interruptions all unnecessary running processes were halted, the
same empirical restrictions were applied to all algorithms [19].
The data normality was tested using the Kolmogorov-Smirnov
and Shapiro-Wilk tests. Means were compared using a one-way
Analysis of Variance (ANOVA) and two-way ANOVA. Finally, a post-
hoc test was conducted by the Games-Howell test (Figure 2).

Results
Interpretation of SPSS results
ANOVA table was determined by SPSS visualizing the p-value for
the main effects (algorithm type, pattern position, pattern length,
and programing language) and their interactions. An appropriate
95% Confidence Interval (CI) was given. A p-value of less than
.05 implies a statistically significant main effect or effect of the
interaction [20].

Preliminaries
This study intended to conduct a robust experiment, to assess the
effectiveness of several exact-string matching algorithms under
distinct variables. Ten exact-string matching algorithms were
subject to unbiased tests. The data reported in this study have

been achieved by a factorial RCBD experiment and subjected to
statistical factorial analysis to measure the main effects of the
four independent factors [21].

Effect of algorithm type on execution time
The descriptive statistics consorted with confidence intervals
(CI 95%) across the ten algorithm type groups are proclaimed
(Table 2). As depicted the Backward-Oracle-Matching algorithm
was linked with the numerically least mean level of execution
time confidence (M=24253831) and the Berry-Ravindran
algorithm was associated with the numerically most mean level
of execution time confidence (M=65723113). To test Hypothesis
1: All the algorithms have equal run time on average; a between-
groups ANOVA was performed. Preliminarily, the normality
of data distribution must be fulfilled to conduct the ANOVA, a
Kolmogorov-Smirnov test (Table 3) indicates that the means
on trial follow a normal distribution, D (320)=0.145, p=.200.
The assumption of homogeneity of variances was measured
and fulfilled on Levene's F test F (9,310)=2.73, p=.004. The
independency between-groups ANOVA produced a statistically
significant effect, F (9,310)=2.60, p=.007, η_p^2= .007. Thus, all
relevant conclusions are in favor of rejecting the H0 for Hypothesis
1. The performance affected by algorithm type and 7% of the
variance in execution time was considered for by algorithm type
membership (Figure 3). To assess the nature of the variances
between the means supplementary, the statistically significant
ANOVA was followed-up with by the Games-Howell post-hoc tests.
In order to check for individual difference between algorithm
types post-hoc comparison using the Games-Howell test was
selected. The results reveal that the mean score for the Brute
Force algorithm (M=40777000, SD=9102098) was significantly
diverged from Horspool’s (M=32954493, SD=7978283), Rabin-
Karp (M=65079287, SD=12222770), Backward-Oracle-Matching
(M=24253831, SD=16582280) and Simon (M=51696978,
SD=14748130) algorithm. The Horspool’s (M=32954493,
SD=7978283) was significantly diverged from Rabin-Karp
(M=65079287, SD=12222770) and Simon (M=51696978,
SD=14748130) algorithm [22]. The Zhu-Takaoka (M=31234328,
SD=13230735) was significantly diverged from Rabin-Karp
(M=65079287, SD=12222770) and Simon (M=51696978,
SD=14748130) algorithm. The Raita was significantly diverged
from Rabin-Karp (M=65079287, SD=12222770) and Simon
(M=51696978, SD=14748130) algorithm. The Rabin-Karp
(M=65079287, SD=12222770) was significantly diverged from
Maximal-Shift (M=21891320, SD=42857463), Backward-
Oracle-Matching (M=24253831, SD=16582280) and Simon
(M=51696978, SD=14748130) algorithm. The Backward-Oracle-
Matching (M=24253831, SD=16582280) was significantly
diverged from Simon (M=51696978, SD=14748130) algorithm.
The mean difference was significant at the .05 level. However, no
significant difference reported between other group members
[23].

Figure 1 Flowchart of experiment workflow.

Figure 2 Flowchart of experiment statistical analyses.

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php4

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

Table 2: Performance results of tested algorithms.

 N Mean Std. Deviation Std. Error

95%
Confidence
interval for

mean

Minimum
Maximum P4

Lower bound Upper bound
BF(Backward

Forward) 32 40777000 9102097.6 1609038.7 37495344 44058656 26000000 73000000

HP(Horspool) 32 32954494 7978283.5 1410374.6 30078016 35830972 22000000 57000000
BR(Break Key) 32 65723113 138603343 24501841 15751279 115694947 27000000 8.00E+08

TW(Term Work) 32 55382887 69492399 12284637 30328206 80437569 29000000 4.00E+08
ZT(ZhuTakaoka) 32 31234328 13230735 2338885.7 26464139 36004517 21000000 81000000
RT(Run Time) 34778041 11037655 1951200.2 30798542 38757540 18000000 66000000

RK(Radial
Keratotomy) 32 65079287 12222771 2160701 60672509 69486066 24000000 77055899

MS(Multiple
Sclerosis) 32 42857463 21891320 3869875.1 34964800 50750125 13007900 1.00E+08

BOM(Backward
Oracle Matching) 32 24253831 16582280 2931360.7 18275282 30232381 12481500 82000000

SMN 32 51696978 14748130 2607125.6 46379710 57014246 37000000 1.00E+08
Total 320 44473742 51732458 2891932.3 38784072 50163412 12481500 8.00E+08

Table 3: Tests of normality.

Kolmogorov-Smirnov Shapiro-Wilk
Statistic Df Sig. Statistic Df Sig.

Duration 0.145 320 .200* 0.946 320 0.427

Figure 3 Performance for different algorithm types.

Correlation of algorithm types and pattern
length
The experiment error rates have been forwarded to a two-way
ANOVA with four levels of pattern lengths (L1, L2, L3, and L4)
and ten levels of algorithm type. The outcomes designate that
the ramifications of the algorithmic type performed a significant
effect in the number of errors among suggested patterns, the
results elucidated that 7.8% of variances in algorithms execution
time was explicated by algorithm types (F (9,280)=2.62, p<.006,
η_p2=.078). The encouragement of pattern length, responsible
only for 1% of variances in algorithms runtime as the result
revealed (F (3,280)=0.85, p=.47, partial η_p2 =.01). The cross-
action between algorithm type and pattern length scores 10%
of variance, (F (27,280)=1.10, p=.34, η_p2 =.10). All relevant
outcomes are in favor of accepting the H0, for Hypothesis 2 and
Hypothesis 3. The pattern length does not affect the speed of the
algorithm (Figure 4) and they are independent (Table 4) [24].

Correlation of algorithm types and pattern
position
A two-way analysis of variance discloses that the pattern position
was statistically insignificant at P>.05. The effect of algorithmic
type demonstrating that 8% of the variance in the algorithm

Figure 4 Impact of pattern length on algorithm run time.

2021

© Under License of Creative Commons Attribution 3.0 License 5

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

execution time was clarified by algorithmic type (F (9,280)=2.56,
p=.008, η_p2 =.08). The main impact of pattern position yielded
an effect size of .01, divulge that the pattern location behind 1%
of the variance in the algorithm execution time (F (3,280)=.73,
p=.53, η_p2 =.01). The interaction effect between the two factors
was highly insignificant (F (27,280)=.84, p=.70, η_p2 =.08),
indicate that no significant combined effect was observed for
algorithmic type and pattern position on algorithm execution
time, responsible only for 8% of the variance [25]. All relevant
outcomes are in favor of accepting the H0, for Hypothesis 4 and
Hypothesis 5. The pattern position does not affect the speed of
the algorithm (Figure 5) and they are independent (Table 5).

Correlation of algorithm types and programing
language
A two-way analysis of variance was conducted on the supremacy
of two independent variables (algorithm type and programing
language) on the execution time [26]. The algorithm type
included ten levels (Brute Force, Backward-Oracle-Matching,
Raita, Horspool’s, Rabin Karp, Berry-Ravindran, Zhu-Takaoka,
Simon and Maximal-Shift, Two-Way) and programing language
consisted of two levels (C# and JAVA). All factors were statistically
significant at the .05 significance level, except for the interaction

between algorithm type and programing language. The main
effect for the programing language yielded an F ratio of F (1,
300)=5.55, p=.02, indicating a significant difference between C#
programing language (M=37895571, SD=16164128) and JAVA
programing language (M=51051913, SD=70858720). The main
effect for algorithm type yielded an F ratio of F (9, 300)=2.67,
p=.005, indicating that the effect for algorithm type was statically
significant, Brute Force (M=40777000.03, SD=9102097.57),
Backward-Oracle-Matching (M=24253831.31, SD=16582280.02),
Raita (M=34778040.63, SD=11037654.94), Horspool’s
(M=32954493.69, SD=7978283.54), Rabin Karp (M=65079287.44,
SD=12222770.78), Berry-Ravindran (M=65723112.56,
SD=138603342.72), Zhu-Takaoka (M=31234328.09,
SD=13230735.42), Simon (M=51696978.19, SD=14748129.57),
Maximal-Shift (M=42857462.50, SD=21891319.54) and Two-Way
(M=55382887.44, SD=69492398.66). The interaction effect was
insignificant, F (9, 300)=1.43, p=.041. All relevant outcomes are
in favor of rejecting the H0 and accepting H1 for Hypothesis 6.
The type of programing language has an impact on the execution
time of the algorithm (Figure 6) without observed significant
interaction between algorithm type and programing language
(Table 6).

Table 4: Independent variable: Algorithm type and pattern length.

Source Type III sum of
squares df Mean square F Sig. Partial Eta squared

Algorithm 5.998E+16 9 6.665E+15 2.622 0.006 0.078
Length 6.51E+15 3 2.17E+15 0.854 0.466 0.009

algorithm × Length 7.555E+16 27 2.798E+15 1.101 0.338 0.096
Error 7.117E+17 280 2.542E+15
Total 1.487E+18 320

Corrected Total 8.537E+17 319
Note: Intel Squared=.166 (Adjusted R Squared=.050)

Figure 5 Impact of pattern position on algorithm run time.

Table 5: Independent variable: Algorithm type and pattern position.

Source Type III sum of
squares df Mean square F Sig. Partial Eta squared

algorithm 5.998E+16 9 6.665E+15 2.56 0.008 0.076

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php6

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

Discussions
This study approached the problem from the exact-string matching
factor of perspective. To make a definitive distinction between
the productivity of frequently accepted exact string-matching
algorithms on nucleotide alphabet. Essentially, throughout
molecular investigations, scanning for oligonucleotides patterns
was considered a commonly performed task. DNA antisense,
microarray, gene cloning, and polymerase chain reaction analyses
all need to be performed a string-matching in one form or another.
Constructing an application based on reliability, productivity,
and suitability for genomic sequences requires distinctiveness
between available algorithms and selecting the best.

The outcome of algorithm design on runtime
The influence of algorithm architectural design on the runtime
of exact-string matching algorithms was widely discussed in prior
studies [27]. According to Christian and others reported that
the Boyer-Moore-Horspool algorithm which does preprocess
on search patterns performed better on short patterns than the
naïve algorithm which lacks the preprocessing step [28]. Simone

and Thierry addressed the exact string-matching problem in
an elaborate experiment; their results reveal that for various
alphabet sizes and pattern lengths the efficiency of algorithms
is quite diverse [29]. Furthermore, AbdulRazzaq concluded
the impact of algorithm architecture was the cornerstone
that affected the performance of some exact string-matching
algorithms. It is obvious from the related literature reviews,
that the algorithm architecture appears to have an influential
role in performance at the time of implementation. The awaited
significance of algorithm design was formulated as a Hypothesis
1 in this study. The best performance in the current study was
scored by the Backward-Oracle-Matching algorithm (Figure 7).
It’s an automaton on a word p, the sequence of letters taken in an
alphabet Σ, that combination called factor oracle. The Two-Way
algorithm ranked second in terms of performance. It’s a variant
of the Boyer-Moors algorithm. The rest of the algorithms have
a fairly close performance, except for both the Berry-Ravindran
and the Rabin-Karp respectively had a poor performance [30].
The results recorded in this experiment are consistent with past
findings, which prove the existence of an effect of algorithm
design on runtime.

Figure 6 Impact of programing language and algorithm type.

Table 6: Independent variable: Algorithm type and programing language.

Source Type III sum of
squares df Mean square F Sig. Partial Eta squared

algorithm 5.998E+16 9 6.665E+15 2.56 0.008 0.076
Programing

language 1.385E+16 1 1.385E+16 5.554 0.019 0.018

Algorithm 5.998E+16 9 6.665E+15 2.673 0.005 0.074
Programing
language ×
algorithm

3.2E+16 9 3.556E+15 1.426 0.176 0.041

Error 7.479E+17 300 2.493E+15
Total 1.487E+18 320

Corrected Total 8.537E+17 319
Note: Intel Squared=.124 (Adjusted R Squared=.068)

Figure 7 Run time for evaluated algorithms.

2021

© Under License of Creative Commons Attribution 3.0 License 7

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

The outcome of the programming languages on
runtime
To our understanding, this is the first study to evaluate the effect of
the programming language type on run time for the exact string-
matching algorithms. A hypothesis was verbalized, Hypothesis
6. To estimate the probable consequence of a programming
language type on the algorithm's run time. The results gained
were in courtesy of accepting the alternative hypothesis. The C#
provides better performance than JAVA superior by 75%.

Challenges
Monitoring the efficiency of exact string-matching algorithms
in terms of performed tasks (e.g. palindrome sequence, and
fingerprint detection) and categorizing them by productivity
rather than the methodologies used are challenging. However,
putting the focus on particular tasks assists the researcher
to improve or implement only specific algorithms instead of
randomly selecting the algorithms.

Conclusions
In this study, the fastest algorithms were Backward-Oracle-
Matching, Zhu-Takaoka, and Horspool’s respectively. The
architecture of the algorithm plays a critical role in the
performance. Moreover, the C# programming language provided
an outstanding performance superior to the Java language and
verified that the programming language has an effective role in
the run time of the algorithms under trial. No pattern-related
influence has been shown, either on the length of the pattern
or on its positioning on the target text, as contrasted to any
previous studies that indicate the remarkable effect of this factor.
Finally, we strongly recommended adding new algorithms to
evaluate their performance. Additionally, expanding the scope
of the possible factors that may interfere with the performance
of algorithms run time, such as the operating system and the
alphabet in future studies.

References
1 Abbott A, Tsay A (2000) Sequence analysis and optimal

matching methods in sociology. Sociol Methods Res 29: 3-33.

2 Razzaq AA, Rashid NA, Hasan AA, Hashem MA (2013) The
exact string matching algorithms efficiency review. Glob J
Technol 9: 12-18.

3 Allauzen C, Crochemore M, Raffinot M (1999) Factor Oracle: A
New Structure for Pattern Matching. International Conference
on Current Trends in Theory and Practice of Computer Science
27: 295-310.

4 Zhang C, Pang J (2012) An Algorithm for Probabilistic
Alternating Simulation. International Conference on Current
Trends in Theory and Practice of Computer Science 21: 431-
442.

5 Boyer RS, Moore JS (1977) A Fast String Searching Algorithm.
Communications of the ACM 20: 762-772.

6 feng HX, Yubao YY, Lu X (2010) Hybrid Pattern-Matching
Algorithm based on BM-KMP Algorithm. International
Conference on Advanced Computer Theory and Engineering
8 :305-310.

7 Cao Z, Yan Z, Liu L (2015) A Fast String Matching Algorithm
based on Lowlight Characters in the Pattern. International
Conference on Advanced Computational Intelligence (ICACI)
27: 179-182

8 Hakak S, Kamsin A, Shivakumara P, Idris MYI, Gilkar GA (2018)
A new split based searching for exact pattern matching for
natural texts. 13: 24-26

9 Krallinger M, Valencia A, Hirschman L (2008) Linking genes to
literature: text mining, information extraction, and retrieval
applications for biology. Genome Biol 9: 1-4.

10 Allmer J (2017) Exact pattern matching: Adapting the Boyer-
Moore algorithm for DNA searches. PeerJ PrePrints.

11 Berry T, Ravindran S (1999) A Fast String Matching Algorithm
and Experimental Results. In Stringology 19: 16-28.

12 Washietl S (2005) Prediction of structural non-coding RNAs by
comparative sequence analysis.

13 AL970861RF MC, Perrin D (1991) Two-way string-matching. J
Assoc Comput 38: 651-675.

14 Deighton RA. Using Rabin-Karp fingerprints and Level DB for
faster searches.

15 Frakes WB, Yates RB (1992) Information retrieval: Data
structures and algorithms. Prentice-Hall.

16 Knuth DE, Morris, Jr JH, Pratt VR (1977) Fast pattern matching
in strings. J Comput 6: 323-350.

17 Michailidis PD, Margaritis KG (2002) On-line approximate
string searching algorithms: Survey and experimental results.
Int J Comput Math 79: 8678-88.

18 Morris Jr J, Pratt V (1970) A linear pattern-matching algorithm.

19 Mozgovoy M (2007) Enhancing computer-aided plagiarism
detection. Joensuun yliopisto.

20 Naser MA, Rashid NA, Aboalmaaly MF (2012) Quick-skip
search hybrid algorithm for the exact string matching problem.
Int J Comput Theory Eng 4:259-262.

21 Raita T (1992) Tuning the boyer-moore-horspool string
searching algorithm. Software: Practice and Experience
10:879-884.

22 Rasool A, Tiwari A, Singla G, Khare N (2012) String matching
methodologies: A comparative analysis. 11: 30-40.

23 Sahota V, Li M, Bayford R (2013) MPS: improving exact string
matching through pattern character frequency. J Data Process
3: 127-129.

24 Sheik SS, Aggarwal SK, Poddar A, Sathiyabhama B, Balakrishnan
N et al. (2005) Analysis of string-searching algorithms on
biological sequence databases. J Curr Sci 25:368-374.

https://doi.org/10.1177/0049124100029001001
https://doi.org/10.1007/978-3-642-27660-6_35
https://doi.org/10.1145/359842.359859
https://doi.org/10.1109/ICACTE.2010.55796203
https://doi.org/10.1109/ICACI.2015.7184773
https://doi.org/10.1371/journal.pone.0200912
https://doi.org/10.1186/gb-2008-9-s2-s8
https://doi.org/10.7287/peerj.preprints.1758v1/supp-1
https://doi.org/10.1007/978-3-540-70600-7_31
https://doi.org/10.1145/116825.116845
https://doi.org/10.1137/0206024
https://doi.org/10.1080/00207160212111
https://doi.org/10.1137/0206024
https://doi.org/10.1002/spe.4380221006

2021

This article is available in: http://colorectal-cancer.imedpub.com/archive.php8

American Journal of Computer
Science and Information Technology Vol. 9 No. 9: 112

25 Simon I (1994) String matching algorithms and automata.
Trends Theor Comput Sci 23: 386-395.

26 Lovis C, Baud RH (2000) Fast exact string pattern-matching
algorithms adapted to the characteristics of the medical
language. J Am Med Inform Assoc 7: 378-391.

27 Faro S, Lecroq T (2010) The exact string matching problem: a
comprehensive experimental evaluation.

28 Sunday DM (1990) A very fast substring search algorithm.
Commun ACM 33:132-142.

29 Wu S, Manber U (1992) Agrep–A Fast Approximate Pattern-
Matching Tool. In Usenix Winter Technical Conference 24:
153-162.

30 Zaki MJ (2001) SPADE: An efficient algorithm for mining
frequent sequences. Mach Learn 42: 31-60.

https://doi.org/10.1136/jamia.2000.0070378
https://doi.org/10.1145/79173.79184
https://doi.org/10.1142/9789812797919_0002
https://doi.org/10.1023/A:1007652502315

