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Abstract
Exact string-matching algorithms have become very supreme in many 
bioinformatics tools. Despite the abundance and diversity of such algorithms, 
exposing them to real-time experimental analysis has been critical. This study was 
conducted to evaluate the efficiency of ten exact-string matching algorithms on 
large-scale genomic sequences from a runtime perspective. To define the most 
efficient algorithms are qualified to handle the short alphabet used for nucleic 
acid coding.

The methodology promoted for this study was the factorial experiment with 
Randomized Complete Block Design (FRCBD). Under influence of four independent 
parameters, four levels of pattern lengths, four levels of pattern indices, two levels 
of programming languages, and ten levels of algorithmic architecture. The yield 
of the tested algorithms was calculated in nanoseconds. One-way ANOVA and 
Two-way ANOVA tests with post-hoc Games-Howell test were used separately for 
statistical analysis. In this study two widely accepted programming languages, C# 
and JAVA were used to speculate the possible effect of programing language on 
algorithm performance. 

The One-way ANOVA results revealed that the Backward-Oracle-Matching (BOM), 
Zhu-Takaoka (ZT), and Horspool's (HP) algorithms exhibited the highest final 
performance correspondingly. These algorithms have demonstrated an efficiency 
of up to 250% higher than other algorithms. The results of two-way ANOVA 
revealed a significant interaction between programing language adopted and 
execution time with the absence of pattern lengths and pattern index effect. The 
combination of the C# programing language and the Backward-Oracle-Matching 
algorithm produced the most effective performance on genomic sequences.
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Introduction
Admittedly, string-matching is an essential problem-solving 
technique, encountered by specialists from various disciplines e.g. 
Data mining, artificial intelligence, and Bioinformatics [1]. Oodles 
of algorithms and methods have been announced for pattern 
recognition, and there are abundant applications and online 
servers that can achieve precise string matching on biological 
data [2]. The methodologies that endorse the recognition of 
the patterns contrast greatly, owing to the obvious variations in 
algorithmic architecture [3]. Generally, string matching algorithms 
could be broadly classified into five distinct classes: (a) algorithms 
used to resolve the problem by character comparisons, (b) 
algorithms that depend on the use of automatic probabilistic 
simulation, (c) non-probabilistic simulation algorithms, (d) 
constant-space algorithms, and (e) real-time algorithms [4]. 
The more traditional and the humblest match approach are to 

equate the pattern characters with the characters in the target 
text. This implementation was offered by the so-called Naïve 
or Brute-Force algorithm [5]. Text or pattern has not been pre-
processed by this algorithm. Its time complexity in the worst 
case is O (nm), where m and n apply to pattern and text length 
correspondingly. Subsequently, numerous algorithms have made 
formidable enhancements on Brute-Force time scheming. The 
worst-case, lower bound of the string-matching problem is O (n). 
The first algorithm to reach the bound was given by Morris and 
Pratt in the early [6] later improved by Knuth. Linear algorithms 
that are based on bit-parallelism were announced by Baeza-Yates 
and Manber Xian-Feng et al. presented the KMPBS algorithm, a 
hybrids algorithm based on Boyer–Moore (BM) and The Knuth-
Morris-Pratt (KMP) algorithm. The text T is scanned from left to 
right for the given pattern P of length m. When searching, the very 
last character of P is compared to the corresponding character 
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of text T, and the KMP algorithm is then used to compare the 
remainder of the characters if there is a match [7-29]. Cao et al. 
[7] formulated a character-based string matching algorithm that 
computes the statistical likelihood of each English letter in the 
pattern string based on its unique position in the pattern string. To 
calculate the mathematical likelihood and dynamic condition of 
each character in the pattern string, the suggested methodology 
utilizes optimization based on a high decision. Hakak et al. 
announced a novel exact-string matching methodology published 
in a research paper entitled "A new split based searching for 
exact pattern matching for natural texts"[8-10]. In this technique, 
the assigned pattern is split into two chunks. To enhance the 
search strategy, only the second chunk of the pattern is searched 
using a brute-force methodology against the given text. When 
the second chunk of the pattern is detected, the first chunk 
of the pattern is directly mapped based on the location of the 
second chunk. The number of biology texts-based info collected 
these days is generally increased at a pace rising [11]. Hence, 
the answer to the question, what is the algorithm that can be 
relied upon from the perspective of reliability and productivity 
among this tremendous momentum of available algorithms 
become an imperative necessity. The methodology espoused 
for this experiment was the so-called Factorial experiment with 
FRCBD, to cope with the interaction between the predetermined 
factors [12]. This experiment was contemplated while building 
the Bioinformatics library. The question then what is the most 
suitable exact string-matching algorithm for invoking biological 
data. Due to time constraints at that period, the Boyer–Moore 
algorithm was implemented and that it was not possible to make 
a comparison between the algorithms. Strategically, the roadmap 
for this study was to assess the productivity and effectiveness of 
some exact-string matching algorithms from a time-consuming 
outlook. For reliability, four independent factors were adapted, 
namely the length and the index of the pattern, the algorithm type 
and the programing language. To estimate the anticipated effect 
of those factors on the performance of each algorithm separately 
under the same experimental conditions [13]. Finally, the resulted 
data interpreted statistically in an accurate and unbiased manner. 
More specifically, in the current study six hypotheses were 
examined: (a) Hypothesis 1: All the algorithms have equal run 
time on average, (b) Hypothesis 2: pattern length does not affect 
searching speed on average. (c) Hypothesis 3: Algorithm type and 
pattern length are independent or the real impact of interaction 
is not prevalent, (d) Hypothesis 4: pattern position does not affect 
searching speed on average, (e) Hypothesis 5: Algorithm type and 
pattern position are independent or the real impact of interaction 
is not prevalent, (f) Hypothesis 6: programing language does not 
affect searching speed on average. The main goal of this paper 
is to evaluate the performance of some exact-string matching 
algorithms in terms of processing time, as well as to measure 
the impact of some factors that may affect the search result on a 
limited alphabet used to encode Deoxyribonucleic Acid [14].

Materials and Methods
System participants
The dataset: The data on Clostridium botulinum strain 
DFPST0029 chromosome (accession ID: NZ_CP028842), has been 
retrieved from online, publicly accessible databases, the Entrez 
Gene databases from The National Center for Biotechnology 
Information, during January 29, 2021. The FASTA sequence file 
was equipped with 3858511 DNA base-pair and used as target 
text [15].

Search patterns: Sixteen randomized pattern groups were 
configured to represent the contrast in position and length 
levels to simulate realistic algorithm operating conditions (Table 
1). Firstly, to investigate the impact of sequence length on the 
profitability of the algorithm, the length was subsequently 
extended four times. The mean of the pattern length was 3500 
(SD=3341.66). Lastly, to gauge the influence of the pattern site on 
algorithm run time, the pattern length was set to four positions 
that represented the topographic regions of the target text. The 
mean of the pattern position was 921542.60 (SD=994136.98) 
[16].
Table 1: Pattern sets. 

Position ID Position Index Length ID Pattern length
P1 0 L1 500 b.p
P2 286170 L2 1500 b.p
P3 1200000 L3 4000 b.p
P4 2200000 L4 8000 b.p

Software and operating system
The benchmarks have all been performed on Intel (R) Core (TM) 
i5-3470 CPU; 3.20 GHz and 16 GB DDR3 RAM. The operating 
system used for the benchmarks was Microsoft Windows 10 64-
bit. Two compilers were recruited to measure the anticipated 
effect of the programing language on algorithm execution time. 
The C# from Microsoft using NET Framework 4.5.2 and JAVA(™) 
SE Development Kit 11.0.9 (JDK 11.0.9) from Oracle Corporation 
[17]. 

Measurements
Bio-statistical experimental design: The study was established 
in a Factorial randomized complete block design fashion. All 
algorithms were subjected to uniform conditions in terms of the 
input sequence, the patterns, and the hardware [18]. The design 
of the experiment encompassed four independent factors: the 
programing language (two levels; C# or JAVA); the exact string-
matching algorithm used to detect search pattern (ten levels; 
Brute Force, Backward-Oracle-Matching, Raita, Horspool’s, Rabin 
Karp, Berry-Ravindran, Zhu-Takaoka, Simon, Maximal-Shift or 
Two-Way Algorithm); the pattern position (four index levels; 
P1=0, P2=286170, P3=1200000 or P4=2200000); and pattern 
length (four levels; L1=500 b.p, L2=1500 b.p, L3=4000 b.p or 
L4=8000 b.p) resulting in a total of three hundred and twenty 
possible treatment combinations (N=320). Execution time for 
each algorithm measured in nanoseconds was assigned as the 
dependent response variable (Figure 1).
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Statistical analyses of the data: All statistics were performed 
using the IBM SPSS 22 statistical package. To eliminate system 
interruptions all unnecessary running processes were halted, the 
same empirical restrictions were applied to all algorithms [19]. 
The data normality was tested using the Kolmogorov-Smirnov 
and Shapiro-Wilk tests. Means were compared using a one-way 
Analysis of Variance (ANOVA) and two-way ANOVA. Finally, a post-
hoc test was conducted by the Games-Howell test (Figure 2).

Results
Interpretation of SPSS results 
ANOVA table was determined by SPSS visualizing the p-value for 
the main effects (algorithm type, pattern position, pattern length, 
and programing language) and their interactions. An appropriate 
95% Confidence Interval (CI) was given. A p-value of less than 
.05 implies a statistically significant main effect or effect of the 
interaction [20].

Preliminaries
This study intended to conduct a robust experiment, to assess the 
effectiveness of several exact-string matching algorithms under 
distinct variables. Ten exact-string matching algorithms were 
subject to unbiased tests. The data reported in this study have 

been achieved by a factorial RCBD experiment and subjected to 
statistical factorial analysis to measure the main effects of the 
four independent factors [21].

Effect of algorithm type on execution time
The descriptive statistics consorted with confidence intervals 
(CI 95%) across the ten algorithm type groups are proclaimed 
(Table 2). As depicted the Backward-Oracle-Matching algorithm 
was linked with the numerically least mean level of execution 
time confidence (M=24253831) and the Berry-Ravindran 
algorithm was associated with the numerically most mean level 
of execution time confidence (M=65723113). To test Hypothesis 
1: All the algorithms have equal run time on average; a between-
groups ANOVA was performed. Preliminarily, the normality 
of data distribution must be fulfilled to conduct the ANOVA, a 
Kolmogorov-Smirnov test (Table 3) indicates that the means 
on trial follow a normal distribution, D (320)=0.145, p=.200. 
The assumption of homogeneity of variances was measured 
and fulfilled on Levene's F test F (9,310)=2.73, p=.004. The 
independency between-groups ANOVA produced a statistically 
significant effect, F (9,310)=2.60, p=.007, η_p^2= .007. Thus, all 
relevant conclusions are in favor of rejecting the H0 for Hypothesis 
1. The performance affected by algorithm type and 7% of the 
variance in execution time was considered for by algorithm type 
membership (Figure 3). To assess the nature of the variances 
between the means supplementary, the statistically significant 
ANOVA was followed-up with by the Games-Howell post-hoc tests. 
In order to check for individual difference between algorithm 
types post-hoc comparison using the Games-Howell test was 
selected. The results reveal that the mean score for the Brute 
Force algorithm (M=40777000, SD=9102098) was significantly 
diverged from Horspool’s (M=32954493, SD=7978283), Rabin-
Karp (M=65079287, SD=12222770), Backward-Oracle-Matching 
(M=24253831, SD=16582280) and Simon (M=51696978, 
SD=14748130) algorithm. The Horspool’s (M=32954493, 
SD=7978283) was significantly diverged from Rabin-Karp 
(M=65079287, SD=12222770) and Simon (M=51696978, 
SD=14748130) algorithm [22]. The Zhu-Takaoka (M=31234328, 
SD=13230735) was significantly diverged from Rabin-Karp 
(M=65079287, SD=12222770) and Simon (M=51696978, 
SD=14748130) algorithm. The Raita was significantly diverged 
from Rabin-Karp (M=65079287, SD=12222770) and Simon 
(M=51696978, SD=14748130) algorithm. The Rabin-Karp 
(M=65079287, SD=12222770) was significantly diverged from 
Maximal-Shift (M=21891320, SD=42857463), Backward-
Oracle-Matching (M=24253831, SD=16582280) and Simon 
(M=51696978, SD=14748130) algorithm. The Backward-Oracle-
Matching (M=24253831, SD=16582280) was significantly 
diverged from Simon (M=51696978, SD=14748130) algorithm. 
The mean difference was significant at the .05 level. However, no 
significant difference reported between other group members 
[23]. 

Figure 1 Flowchart of experiment workflow.

Figure 2 Flowchart of experiment statistical analyses.
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Table 2: Performance results of tested algorithms.

 N Mean Std. Deviation Std. Error

95% 
Confidence 
interval for 

mean

Minimum
Maximum P4

Lower bound Upper bound
BF(Backward 

Forward) 32 40777000 9102097.6 1609038.7 37495344 44058656 26000000 73000000

HP(Horspool) 32 32954494 7978283.5 1410374.6 30078016 35830972 22000000 57000000
BR(Break Key) 32 65723113 138603343 24501841 15751279 115694947 27000000 8.00E+08

TW(Term Work) 32 55382887 69492399 12284637 30328206 80437569 29000000 4.00E+08
ZT(ZhuTakaoka) 32 31234328 13230735 2338885.7 26464139 36004517 21000000 81000000
RT(Run Time)         34778041 11037655 1951200.2 30798542 38757540 18000000 66000000

RK(Radial 
Keratotomy) 32 65079287 12222771 2160701 60672509 69486066 24000000 77055899

MS(Multiple 
Sclerosis) 32 42857463 21891320 3869875.1 34964800 50750125 13007900 1.00E+08

BOM(Backward 
Oracle Matching) 32 24253831 16582280 2931360.7 18275282 30232381 12481500 82000000

SMN 32 51696978 14748130 2607125.6 46379710 57014246 37000000 1.00E+08
Total 320 44473742 51732458 2891932.3 38784072 50163412 12481500 8.00E+08

Table 3: Tests of normality.

Kolmogorov-Smirnov Shapiro-Wilk
Statistic Df Sig. Statistic Df Sig.

Duration 0.145 320 .200* 0.946 320 0.427

Figure 3 Performance for different algorithm types.

Correlation of algorithm types and pattern 
length
The experiment error rates have been forwarded to a two-way 
ANOVA with four levels of pattern lengths (L1, L2, L3, and L4) 
and ten levels of algorithm type. The outcomes designate that 
the ramifications of the algorithmic type performed a significant 
effect in the number of errors among suggested patterns, the 
results elucidated that 7.8% of variances in algorithms execution 
time was explicated by algorithm types (F (9,280)=2.62, p<.006, 
η_p2=.078). The encouragement of pattern length, responsible 
only for 1% of variances in algorithms runtime as the result 
revealed (F (3,280)=0.85, p=.47, partial η_p2 =.01). The cross-
action between algorithm type and pattern length scores 10% 
of variance, (F (27,280)=1.10, p=.34, η_p2 =.10). All relevant 
outcomes are in favor of accepting the H0, for Hypothesis 2 and 
Hypothesis 3. The pattern length does not affect the speed of the 
algorithm (Figure 4) and they are independent (Table 4) [24]. 

Correlation of algorithm types and pattern 
position
A two-way analysis of variance discloses that the pattern position 
was statistically insignificant at P>.05. The effect of algorithmic 
type demonstrating that 8% of the variance in the algorithm 

Figure 4 Impact of pattern length on algorithm run time.
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execution time was clarified by algorithmic type (F (9,280)=2.56, 
p=.008, η_p2 =.08). The main impact of pattern position yielded 
an effect size of .01, divulge that the pattern location behind 1% 
of the variance in the algorithm execution time (F (3,280)=.73, 
p=.53, η_p2 =.01). The interaction effect between the two factors 
was highly insignificant (F (27,280)=.84, p=.70, η_p2 =.08), 
indicate that no significant combined effect was observed for 
algorithmic type and pattern position on algorithm execution 
time, responsible only for 8% of the variance [25]. All relevant 
outcomes are in favor of accepting the H0, for Hypothesis 4 and 
Hypothesis 5. The pattern position does not affect the speed of 
the algorithm (Figure 5) and they are independent (Table 5).

Correlation of algorithm types and programing 
language
A two-way analysis of variance was conducted on the supremacy 
of two independent variables (algorithm type and programing 
language) on the execution time [26]. The algorithm type 
included ten levels (Brute Force, Backward-Oracle-Matching, 
Raita, Horspool’s, Rabin Karp, Berry-Ravindran, Zhu-Takaoka, 
Simon and Maximal-Shift, Two-Way) and programing language 
consisted of two levels (C# and JAVA). All factors were statistically 
significant at the .05 significance level, except for the interaction 

between algorithm type and programing language. The main 
effect for the programing language yielded an F ratio of F (1, 
300)=5.55, p=.02, indicating a significant difference between C# 
programing language (M=37895571, SD=16164128) and JAVA 
programing language (M=51051913, SD=70858720). The main 
effect for algorithm type yielded an F ratio of F (9, 300)=2.67, 
p=.005, indicating that the effect for algorithm type was statically 
significant, Brute Force (M=40777000.03, SD=9102097.57), 
Backward-Oracle-Matching (M=24253831.31, SD=16582280.02), 
Raita (M=34778040.63, SD=11037654.94), Horspool’s 
(M=32954493.69, SD=7978283.54), Rabin Karp (M=65079287.44, 
SD=12222770.78), Berry-Ravindran (M=65723112.56, 
SD=138603342.72), Zhu-Takaoka (M=31234328.09, 
SD=13230735.42), Simon (M=51696978.19, SD=14748129.57), 
Maximal-Shift (M=42857462.50, SD=21891319.54) and Two-Way 
(M=55382887.44, SD=69492398.66). The interaction effect was 
insignificant, F (9, 300)=1.43, p=.041. All relevant outcomes are 
in favor of rejecting the H0 and accepting H1 for Hypothesis 6. 
The type of programing language has an impact on the execution 
time of the algorithm (Figure 6) without observed significant 
interaction between algorithm type and programing language 
(Table 6).

Table 4: Independent variable:  Algorithm type and pattern length.  

Source Type III sum of 
squares df Mean square F Sig. Partial Eta squared

Algorithm 5.998E+16 9 6.665E+15 2.622 0.006 0.078
Length 6.51E+15 3 2.17E+15 0.854 0.466 0.009

algorithm × Length 7.555E+16 27 2.798E+15 1.101 0.338 0.096
Error 7.117E+17 280 2.542E+15    
Total 1.487E+18 320     

Corrected Total 8.537E+17 319     
Note:  Intel Squared=.166 (Adjusted R Squared=.050) 

Figure 5 Impact of pattern position on algorithm run time.

Table 5: Independent variable:  Algorithm type and pattern position. 

Source Type III sum of 
squares df Mean square F Sig. Partial Eta squared

algorithm 5.998E+16 9 6.665E+15 2.56 0.008 0.076
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Discussions
This study approached the problem from the exact-string matching 
factor of perspective. To make a definitive distinction between 
the productivity of frequently accepted exact string-matching 
algorithms on nucleotide alphabet. Essentially, throughout 
molecular investigations, scanning for oligonucleotides patterns 
was considered a commonly performed task. DNA antisense, 
microarray, gene cloning, and polymerase chain reaction analyses 
all need to be performed a string-matching in one form or another. 
Constructing an application based on reliability, productivity, 
and suitability for genomic sequences requires distinctiveness 
between available algorithms and selecting the best.

The outcome of algorithm design on runtime
The influence of algorithm architectural design on the runtime 
of exact-string matching algorithms was widely discussed in prior 
studies [27]. According to Christian and others reported that 
the Boyer-Moore-Horspool algorithm which does preprocess 
on search patterns performed better on short patterns than the 
naïve algorithm which lacks the preprocessing step [28]. Simone 

and Thierry addressed the exact string-matching problem in 
an elaborate experiment; their results reveal that for various 
alphabet sizes and pattern lengths the efficiency of algorithms 
is quite diverse [29]. Furthermore, AbdulRazzaq concluded 
the impact of algorithm architecture was the cornerstone 
that affected the performance of some exact string-matching 
algorithms. It is obvious from the related literature reviews, 
that the algorithm architecture appears to have an influential 
role in performance at the time of implementation. The awaited 
significance of algorithm design was formulated as a Hypothesis 
1 in this study. The best performance in the current study was 
scored by the Backward-Oracle-Matching algorithm (Figure 7). 
It’s an automaton on a word p, the sequence of letters taken in an 
alphabet Σ, that combination called factor oracle. The Two-Way 
algorithm ranked second in terms of performance. It’s a variant 
of the Boyer-Moors algorithm. The rest of the algorithms have 
a fairly close performance, except for both the Berry-Ravindran 
and the Rabin-Karp respectively had a poor performance [30]. 
The results recorded in this experiment are consistent with past 
findings, which prove the existence of an effect of algorithm 
design on runtime.

Figure 6 Impact of programing language and algorithm type.

Table 6: Independent variable:  Algorithm type and programing language.

Source Type III sum of 
squares df Mean square F Sig. Partial Eta squared

algorithm 5.998E+16 9 6.665E+15 2.56 0.008 0.076
Programing 

language 1.385E+16 1 1.385E+16 5.554 0.019 0.018

Algorithm 5.998E+16 9 6.665E+15 2.673 0.005 0.074
Programing 
language × 
algorithm

3.2E+16 9 3.556E+15 1.426 0.176 0.041

Error 7.479E+17 300 2.493E+15    
Total 1.487E+18 320     

Corrected Total 8.537E+17 319     
Note: Intel Squared=.124 (Adjusted R Squared=.068)

Figure 7 Run time for evaluated algorithms.
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The outcome of the programming languages on 
runtime
To our understanding, this is the first study to evaluate the effect of 
the programming language type on run time for the exact string-
matching algorithms. A hypothesis was verbalized, Hypothesis 
6. To estimate the probable consequence of a programming 
language type on the algorithm's run time. The results gained 
were in courtesy of accepting the alternative hypothesis. The C# 
provides better performance than JAVA superior by 75%.

Challenges
Monitoring the efficiency of exact string-matching algorithms 
in terms of performed tasks (e.g. palindrome sequence, and 
fingerprint detection) and categorizing them by productivity 
rather than the methodologies used are challenging. However, 
putting the focus on particular tasks assists the researcher 
to improve or implement only specific algorithms instead of 
randomly selecting the algorithms.

Conclusions
In this study, the fastest algorithms were Backward-Oracle-
Matching, Zhu-Takaoka, and Horspool’s respectively. The 
architecture of the algorithm plays a critical role in the 
performance. Moreover, the C# programming language provided 
an outstanding performance superior to the Java language and 
verified that the programming language has an effective role in 
the run time of the algorithms under trial. No pattern-related 
influence has been shown, either on the length of the pattern 
or on its positioning on the target text, as contrasted to any 
previous studies that indicate the remarkable effect of this factor. 
Finally, we strongly recommended adding new algorithms to 
evaluate their performance. Additionally, expanding the scope 
of the possible factors that may interfere with the performance 
of algorithms run time, such as the operating system and the 
alphabet in future studies.
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