

The Libyan Academy

School of Engineering and Applied Science

Department of Medical Engineering

 Division of Genetic Engineering

BioQt an Integrated Bioinformatics Software

Development Kit

A Thesis Submitted to the Department of Medical Engineering in Partial

Fulfillment of the Requirements for Master Science Degree in Genetic

Engineering.

By: Usama Shihub Erawab Under Supervision of: Dr. Saeed Zamit

 Department Of Medical Engineering

Spring 2015

ABSTRACT:

Bioinformatics is a multi-disciplinary science focusing on the applications of

computational methods and mathematical statistics to molecular biology. Choosing

bioinformatics as specialization gives an opportunity to get involved with the most

interesting computational techniques dealing with biological data to contribute to

cure and diagnose some of genetic disorders that affect biological machines. The

purpose of this library (which defines namespace BioQt), is to provide a set of

routines for handling biological sequence data for Qt/C++ users (the full source

code available on https://github.com/alrawab/BioQt). This thesis will shed the light

on some modules of BioQt SDK such as exact string matching problem,

Microsatellite Repeats, Palindromic sequences and sequence alignment algorithms

(Longest Common Subsequence, Needleman-Wunsch and Smith-Waterman). This

thesis examines and evaluates these challenging problems in bioinformatics by

using Qt/C++.

file:///D:/Downloads/BackUp/New%20folder%20(2)/New%20folder/zz/html/namespace_bio_qt.html
https://github.com/alrawab/BioQt

Contents

1- Chapter One ... 1

Introduction .. 1

1.1 Bioinformatics: .. 1

1.2 The importance of bioinformatics: .. 2

1.3 Development of bioinformatics: .. 2

1.4 Bioinformatics application areas: .. 3

1.4.1 Sequence analysis: ... 3

1.4.2 Genome annotation: ... 4

1.4.3 Drug production: .. 4

1.4.4 Mutations detection:... 4

1.4.5 Phylogeny: ... 5

1.4.6 Protein expression analysis: ... 5

1.4.7 Gene expression analysis: .. 5

1.4.8 Protein structure prediction: ... 5

1.4.9 Primer design: .. 6

1.5 Bioinformatics centers:.. 6

1.6 Qt: .. 7

1.7 Nucleic Acids: ... 7

1.8 Proteins: ... 9

1.9 Motivations: ... 9

1.10 Objective: ...10

2 - Chapter Two: ...11

String Processing Problems ...11

2.1 Keywords:..11

2.2 Basic Definitions on String: ..12

2.2.1 Alphabet: ..12

2.2.2 Sequence (or string): ..12

2.2.3 Subsequence: ..12

2.2.4 Substring: ...12

2.2.5 Length of string: ...13

2.2.6 Prefix: ...13

2.2.7 Proper prefix: ...13

2.2.8 Suffix:...13

2.2.9 Proper Suffix: ...13

2.3 Microsatellite Repeats: ..14

2.4 Objective: ..14

2.5 Trinucleotide repeats disorder: ..15

2.5.1 Polyglutamine Diseases: ..15

Table 2.1 Polyglutamine (PolyQ) Diseases ...16

2.5.2 Non-Polyglutamine Diseases: ..16

Table 2.2 Non-Polyglutamine Diseases. ..17

2.6 Material: ..17

2.7 Methods: ..18

2.8 Palindromes: ..19

2.9 Importance of Palindromic sequence: ...19

2.10 Objective: ...20

2.11 Material: ...20

2.12 Methods: ...20

2.13 Exact String Matching: ..23

2.14 Objective: ...23

2.15 Material: ...23

2.16 Methods: ...24

2.17 Brute Force: ..24

2.17.1 Brute Force Visualization: ...25

2.18 The Knuth-Morris-Pratt (KMP) Algorithm: ..26

2.18.1 The prefix-function π: ..26

2.18.2 To compute π for the pattern ‗p‘: ...29

2.18.3 Find matches algorithm: ..30

2.18.4 Advantage: ...38

2.18.5 Disadvantages: ...38

2.19 Boyer-Moore Algorithm: ...38

2.19.1 Analysis of Boyer-Moore Algorithm: ...39

2.19.2 Bad character Heuristic: ...40

2.19.3 Good suffix Heuristic:..40

2.19.4 Advantages: ..43

2.19.5 Disadvantages: ...43

3 - Chapter Three: ...44

String Matching Evaluation Methods ..44

3.1 Sequence Alignment: ..45

3.2 Biological Motivation ..45

3.3 Terminology: ...46

3.3.1 Identity: ..46

3.3.2 Similarity: ..46

3.3.3 Homology: ...46

3.4 Pairwise Alignment: ..46

3.5 Multiple Sequence Alignment: ..48

3.6 Pairwise Sequence Alignment by Dynamic Programming:48

3.7 Global Alignment (Needleman-Wunsch Algorithm):49

3.8 Local Alignment (Smith-Waterman Algorithm): ..52

3.9 Substitution matrices: ..54

3.9.1 Different kind Of Matrices: ...55

3.9.2 Limitations: ..56

3.10 Objective: ...56

3.11 Material: ...56

3.12 Methods: ...56

- Dynamic programing approach: ..56

 Global alignment (Needleman-Wunsch algorithm).56

 Local alignment (Smith-Waterman algorithm).56

4 - Chapter Four ..57

Case Study and Results ..57

4.1 Microsatellite Repeats Case Study: ...57

Motif ..57

Motif ..58

4.2 Palindromes Case Study: ...61

4.2.1 Results: ...61

4.3 Exact String Matching: ..64

4.3.1 Experiment: ..64

4.3.2 Results: ...64

4.4 Sequence Alignment: ..68

4.4.1 Experiment: ..68

4.4.2 Results: ...68

5 - Chapter Five: ...73

Conclusion and Future work ..73

6 - Refrences: ..74

In God we trust

1

1- Chapter One

Introduction

This is an introductory chapter introduce the fundamental concepts about

bioinformatics (Sections 1.1 to 1.5), Qt framework Section(1.6), biological

macromolecules Sections(1.7 to 1.8) and Finally in both Sections 1.9 and 1.10

describes the motivations and the objectives of this thesis respectively.

1.1 Bioinformatics:

May not be a clear-cut definition and measurement of bioinformatics as term but it

can be referred to it as ―the administration, dealing and exploitation of biological

information by using computer methods‖ that is why this field is one of

overlapping fields of knowledge among other sciences. It is clear that this

discipline is the merger between the various branches of life sciences and

computer science but for accuracy this field guided for molecular science in

particular and so can be called the Computational Molecular Biology which

includes the Biosimulation , Bioimaging and others to pour in the end to the

management and analysis of biological information. Hence it is clear that

bioinformatics coming from the analysis of biomolecules such as DNA, RNA and

Proteins on the one hand and on the other hand the computer classifying and

arranging of this information, which is termed as Data Biomining.

2

1.2 The importance of bioinformatics:

No room for doubt that the tremendous progress and unprecedented in the field of

bioinformatics which resulted in a novel and amazing scientific discoveries was a

result of massively generated data produced by genomic research‘s in the past two

decade.This has led to increased interest in them at all aspects. It has entered into

under -graduate and graduate curricula and areas of scientific research on different

backgrounds. In field of bioinformatics and studies that conducted in slico (literally

Latin for "in silicon", alluding to use of silicon for semiconductor computer chips

which mean the performance committed via computers) plans are designed in ideal

conditions by building computer models of living cells which include the internal

metabolic path-ways based on wet-lab-data(any materials are handled in liquid or

volatile state) and applies them against in-slico simulation to reach the best

possible theoretical results before they are applied to the real production of drugs ,

vaccines, hormones or any other biological compounds .As result of what

mentioned above it‘s become crucial for emerge of new standalone discipline

deals effectively with various data types (DNA , protein sequencing and coding

regions.. etc.) resulted from those experiments and exploited optimally to increase

the understand the living cells in terms of function and structure .

1.3 Development of bioinformatics:

The term bioinformatics has been formally used recently but its actual start was in

the sixties of the last century by Margaret O. Dayhoff [1] the biochemist researcher

at the National Biomedical Research Foundation (http://www.nabr.org/). Where

she pioneered the application of mathematics and computational methods to the

field of biochemistry and issued the first database of protein sequences in a series

http://www.nabr.org/

3

of releases lasted until the seventies of the last century. In 1970 Needleman and

Wunsch [2] introduce an algorithm that searches the similarities in the amino acid

sequence of two proteins. Since the eighties of the last century has witnessed a

steady growth in the number of genomes that have been identified there sequences.

From the foregoing it is clear that bioinformatics beyond the bimolecular aspects

also needs:

1. An effective data warehouse.

2. Availability of data which stored in data warehouse.

3. Manipulation of stored data by different methods to extract useful

information.

1.4 Bioinformatics application areas:

In 1979 Paulien Hogeweg [3] coined the term bioinformatics for the study of

informatics processes in biotic systems and since that this area has become

expanding day after day. Some of the grand area of research in bioinformatics

includes:

1.4.1 Sequence analysis:

It‘s the most elementary procedure in bioinformatics .This procedure

focusing on the similarity and dissimilarity portions of biological

sequence during medical analysis and genome mapping processes

and implies subjecting a DNA or peptide sequence to sequence

alignment, repeated sequence searches, or other bioinformatics

methods.

4

1.4.2 Genome annotation:

In the context of genomics annotation is the process of identifying the

locations of genes and determination of their features in a DNA

sequence.

1.4.3 Drug production:

By applying the in silico subtractive genomics approach in the

designing of effective drugs by subtraction of sequence between the

host and parasite proteome provides information for a set of proteins

that are likely to be essential to the parasite but absent in the host.

1.4.4 Mutations detection:

Traditionally genetic disorders are grouped into three cardinal

categories: single-gene, chromosomal, and multifactorial disorders.

Molecular and cytogenetic techniques have been applied to identify

genetic mutations leading to diseases. Accurate diagnosis of diseases

is essential for appropriate treatment of patients, genetic counseling

and prevention strategies. To manage the sheer volume of sequence

data produced. The bioinformatics create new algorithms and software

to compare the sequencing results to the growing collection of human

genome sequences and gremlin polymorphisms. New physical

detection technologies are employed, such as oligonucleotide

microarrays to identify chromosomal gains and losses and single-

nucleotide polymorphism arrays to detect known point mutations.

5

1.4.5 Phylogeny:

It‘s important to understand evolutionary and genetic relationships

between organisms; bioinformatics is very helpful to find out the

dimensional time for evolution through molecular sequencing data

and morphological data matrices.

1.4.6 Protein expression analysis:

Gene expression is measured in many ways including mRNA and

protein expression however protein expression is one of the best clues

of actual gene activity since proteins are usually final catalysts of cell

activity. Protein, microarrays and high throughput (HT) mass

spectrometry (MS) can provide a snapshot of the proteins present in a

biological sample. Bioinformatics is very much involved in making

sense of protein microarray and HT MS data.

1.4.7 Gene expression analysis:

The expression of many genes can be determined by measuring mRNA

levels with various techniques such as microarrays, expressed cDNA

sequence tag (EST) sequencing, serial analysis of gene expression

(SAGE) tag sequencing, massively parallel signature sequencing

(MPSS), or various applications of multiplexed in-situ hybridization

etc. All of these techniques are extremely noise-prone and subject to

bias in the biological measurement.

1.4.8 Protein structure prediction:

Polypeptide chain (so-called primary structure) can be easily

determined from the sequence on the gene that codes for it and this

primary structure uniquely determines a structure in its native

environment. To understand the function for a protein it‘s vital to have

6

proper knowledge of this structure. For lack of better terms the protein

structure is classified as secondary, tertiary and quaternary structure.

Prediction of protein structure is very important task for

bioinformatics for drug design and the design of novel enzymes.

1.4.9 Primer design:

In the past decade molecular biology has been transformed from the

art of cloning a single gene to a statistical science measuring and

calculating properties of entire genomes. It‘s become an urgent

necessity for effective Programs for designing appropriate primers for

polymerase chain reaction (PCR).

1.5 Bioinformatics centers:

There are many bioinformatics centers distributed worldwide providing services

and resources for researchers and they available online. These centers vary in terms

of comprehensiveness and capability and they can be classified in terms of

importance as follows:

 NCBI (The National Center for Biotechnology Information): U.S.

government-funded national resource for molecular biology information

and exhibits a huge amount of diverse data Access to Many public

databases and other references.

 EBI (The European Bioinformatics Institute).

 EMBL (The European Molecular Biology Laboratory).

 DDBJ (DNA database of Japan).

7

1.6 Qt:

Qt (―cute‖) is a cross-platform development framework that can be run on various

software and hardware platforms with little or no change in the underlying

codebase. The Qt framework first became publicly available in May 1995 which

initially developed by Haavard Nord and Eirik Chambe-Eng (from Norwegian

Institute of Technology in Trondheim and both graduated with master's degrees in

computer science)[4]. Qt uses standard C++ with extensions including signals and

slots that simplify handling of events, and this helps in development of both GUI

and server applications which receive their own set of event information and

should process them accordingly. Because of simplicity, robustness, native

performance, cross-platform compatibility and both commercial and open source

licenses, many organizations in many parts of the world use Qt.

1.7 Nucleic Acids:

Collectively referred polymers of nucleotides (DNA and RNA) as Nucleic Acids

even in Prokaryotic (in some cases exist outside the nucleus) [10]. Each nucleotide

consists of three components: a nitrogenous base (nucleobase), a pentose sugar

(deoxyribose in case of DNA and ribose in case of RNA) and a phosphate group.

There are two types of nitrogenous bases Purines and Pyrimidine‘s .the purines are

Adenine and Guanine abbreviated A and G while Pyrimidine‘s are Cytosine,

Thymine and Uracil abbreviated C, T, and U. Both DNA and RNA contain A, C,

and G; only DNA contains the base T, whereas only RNA contains the base U.

8

Figure 01.1 Watson - Crick Model for the structure of DNA [10].

Figure 01.2 Bases commonly found in nucleic acids [11].

9

1.8 Proteins:

Proteins are built from twenty different amino acids (A, C, D, E, F, G, H, I, K, L,

M, N, P, Q, R, S, T, V, M, Y). Each protein has its distinct amino-acid sequence

and 3-dimensional structure. Proteins generated from DNA in process called gene

expression. The process of gene expression divided into two steps, the first is

transcription where the information coded in DNA is copied into a molecule of

RNA whose bases are complementary to those of the DNA. The second is

translation, where the information now encoded in RNA which translated into

instructions for manufacturing a protein utilizing the ribosome protein machine.

1.9 Motivations:

There are many good reasons to prefer Qt/C++ to other languages for writing this

library:

 Portability:

 Qt is Platform-independent this means the code can be complied

under Windows or Linux running on x86 hardware or Solaris running

on SPARC hardware.

 Productivity:

 Qt comes with full set of effective built-in programing modules

which help programing and save time such as QtGui, QtWebKit,

QtNetwork, QtOpenGL, QtSql and many others .

10

1.10 Objective:

The purpose of this thesis is to provide a programing library for scientists and

Programmers working on problems in bioinformatics and computational biology. It

may also appeal to programmers who want to improve their programming skills or

programmers who have been working in bioinformatics and computational biology

but are familiar with languages other than Qt/C++. A reasonable level of

programming skill is presumed as is some familiarity with some of the basic tasks

that need to be carried out in bioinformatics.

11

2 - Chapter Two:

 String Processing Problems

DNA, RNA, and protein are represented as strings in bioinformatics for this reason

string processing is the cornerstone in the field of bioinformatics and these

problems take a variety of manifestations each of which has a specific meaning.

This topic will shed some light on some traditional string problems such as: local

sequence alignment problem, global sequence alignment problem, exact pattern

matching problem, approximate pattern matching problem, finding all maximal

palindromes problem, finding all tandem repeats problem, finding all tandem

arrays problem, etc. There are quite rich researches for these problems. This thesis,

will propose the major algorithms in this respect which implemented in BioQt.

2.1 Keywords:

 Computational Biology; Bioinformatics ; Naive Algorithm ; Boyer-Moore ;

Knuth–Morris–Pratt; Palindromes; Microsatellite; Manacher Algorithm; dynamic

algorithms; Needleman-Wunsch; Smith-Waterman ; Longest Common

Subsequence; Bit-Vector Algorithm.

12

2.2 Basic Definitions on String:

As mentioned earlier, DNA, RNA, and protein are represented as strings in

bioinformatics. Therefore it‘s important to shed light on some basic definitions that

are needed in string processing [12]:

2.2.1 Alphabet:

A set of allowable symbols. Examples of biosequence alphabets:

Σ= {A, C, G, T} (DNA).

Σ= {A, C, G, U} (RNA).

Σ= {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}

(Proteins).

2.2.2 Sequence (or string):

 A finite succession of characters chosen from an alphabet e.g.

ATCCGAACTTG from the DNA alphabet Σ= {A, C, G, T}.

2.2.3 Subsequence:

 A sequence obtained from a sequence by removal of characters e.g.

TTT is a subsequence of ATATAT; AAAA is not a sub-sequence of

ATATAT.

2.2.4 Substring:

 A subsequence of consecutive characters e.g. TAC is a substring of

ACTACA, TAC is not a substring of ATGAC.

13

2.2.5 Length of string:

It‘s the number of characters in the string. It could be any non-

negative integer. For example, if Σ = {A, C, G, T}, then

ACGATGGGT is a string over Σ with length equals 9.

2.2.6 Prefix:

Substring containing the first character of a string, including the

empty string e.g. in the string ACT, a prefix may be the empty string,

A, AC, or ACT.

2.2.7 Proper prefix:

Any prefix of string except the string itself, a string of 1 letter has no

proper prefix e.g. in the string ACT, a proper prefix are A, AC.

2.2.8 Suffix:

Substring containing the last character of a string e.g. in the string

ACT, may be T, CT or ACT.

2.2.9 Proper Suffix:

Any suffix of string except the string itself e.g. in the string ACT, may

be T or CT.

14

2.3 Microsatellite Repeats:

The term microsatellite was first coined by Litt and Luty [14]. Microsatellites are

simple repeated motifs consisting of 1 to 6 base pairs contains a tandem of single,

di, tri and tetra nucleotide repeat(e.g. a common repeat motif in birds is ACn) [17]

and they can be found in both intron and exon regions. Microsatellite repeats

rarely occur within coding sequences but tri nucleotide repeats in or near genes are

associated with certain inherited disorders (this will discussed as case study for

Microsatellite Repeats in this thesis in next sections). The primary advantage of

microsatellites as genetic markers is that they are inherited in a Mendelian fashion

as co-dominant markers. DNA microsatellites are highly polymorphic and this

means that the number of CA repeats for example varies between individuals and

make them useable in linkage studies in gene mapping. This variation in repeat

number is caused by incorrect base-pairing of the tandem repeats of the two

complementary DNA strands during DNA replication (this phenomenon known as

slipped strand mispairing) [15]. Furthermore, high abundance and a broad

distribution throughout the genome have made microsatellites one of the most

popular genetic markers for use in plant breeding programs(Gous Miah, Mohd

Y.Rafii et.al) [16].

2.4 Objective:

Design Qt/C++ class to Detect Microsatellite Repeats in Sequences and

investigated the position and frequencies of repeats.

15

2.5 Trinucleotide repeats disorder:

Also known as triplet repeats expansion disorders or codon reiteration disorders

used as case study for testing BioQt microsatellite finder class. This a novel type of

genome instability originally discovered in 1991 upon cloning the gene responsible

for the fragile X syndrome, it has proved to be a general phenomenon responsible

for a growing number of human neurological disorders [18].This set of

neurodegenerative disorders divided into two subgroups :

Figure: 2.1 Trinucleotide repeats disorder types.

2.5.1 Polyglutamine Diseases:

Caused by expanded cytosine-adenine-guanine (CAG) repeats situated in the

coding regions of various human genes is linked to eight neurodegenerative

diseases, including Huntington disease ,spinobulbar muscular atrophy,several

spinocerebellar ataxias ,and dentatorubropallidoluysian atrophy [18]. In all

mentioned cases there is no effect on both transcription of target genes or

translation of corresponding mRNAs [18] the only noticeable change is the repeat-

Trinucleotide repeat disorder

polyglutamine (polyQ) Non-Polyglutamine

16

encoded polyglutamine stretches in the respective protein products lead to their

self-aggregation and aggregation with other proteins(table 2.1).

Type Gene

Normal PolyQ

repeats

Pathogenic PolyQ

repeats

DRPLA

(Dentatorubropallidoluysian

atrophy)

ATN1 or

DRPLA

6 - 35 49-88

HD (Huntington's disease) HTT

(Huntingtin)

6 - 35 36 - 250

 SBMA (Spinal and bulbar

muscular atrophy)

AR 9 - 36 38 - 62

SCA1 (Spinocerebellar

ataxia Type 1)

ATXN1 6 - 35 49 - 88

SCA2 (Spinocerebellar

ataxia Type 2)

ATXN2 14 - 32 33 - 77

SCA3 (Spinocerebellar

ataxia Type 3 or Machado-

Joseph disease)

ATXN3 12 - 40 55 - 86

SCA6 (Spinocerebellar

ataxia Type 6)

CACNA1A 4 - 18 21 - 30

SCA7 (Spinocerebellar

ataxia Type 7)

ATXN7 7 - 17 38 - 120

SCA17 (Spinocerebellar

ataxia Type 17)

TBP 25 - 42 47 - 63

Table 2.1 Polyglutamine (PolyQ) Diseases

2.5.2 Non-Polyglutamine Diseases:

Beyond PolyQ group there is another subset of disorders termed as

non-polyglutamine diseases which also fall under the category of

trinucleotide repeat disorders. The researchers have identified six non-

17

polyglutamine each which exhibit a unique repeated codon , These

diseases has relatively minor resemblance to each other‘s. Noticeably

none of them appear to have any strong similarity to Huntington‘s

disease or the other PolyQ diseases (table 2.2).

Type Gene Codon
Normal/wild

type
Pathogenic

FRAXA (Fragile

X syndrome)

FMR1, on the X-

chromosome
CGG 6 - 53 230+

FXTAS (Fragile

X-associated

tremor/ataxia

syndrome)

FMR1, on the X-

chromosome
CGG 6 - 53 55-200

FRAXE (Fragile

XE mental

retardation)

AFF2 or FMR2,

on the X-

chromosome

CCG 6 - 35 200+

FRDA

(Friedreich's

ataxia)

FXN or X25,

(frataxin—

reduced

expression)

GAA 7 - 34 100+

DM (Myotonic

dystrophy)
DMPK CTG 5 - 37 50+

SCA8

(Spinocerebellar

ataxia Type 8)

OSCA or SCA8 CTG 16 - 37 110 - 250

SCA12

(Spinocerebellar

ataxia Type 12)

PPP2R2B or

SCA12
nnn On 5' end 7 - 28 66 - 78

Table 2.2 Non-Polyglutamine Diseases.

2.6 Material:

 C++ compiler gnu GCC for Unix/mac or VC++ for MS windows.

 Qt SDK.

 Any Computer platforms (Pc/Mac or UNIX).

http://en.wikipedia.org/wiki/Myotonin-protein_kinase

18

2.7 Methods:

FindMicrosatelliteRepeats class is written in Qt/C++ and calculates Microsatellite

Repeats positions and frequencies uses sliding window algorithm.

Figure 2.2 Microsatellites Repeats Algorithm Flowchart.

19

2.8 Palindromes:

A palindrome, in the literary sense, refers to a word or a phrase that reads the same

in both directions, i.e. when it is read in forward and reverse. One of the oldest

palindromes known is the phrase ―Sator arepo tenet opera rotas‖ [19]. But in the

biological context definition of palindromes is slightly differs, in case of proteins

there is no difference compared to regular English language definition of

palindrome, in contrast the case of either DNA or RNA shows evident difference.

For a nucleotide sequence to be considered as a palindrome, its complementary

strand must read the same in the opposite direction i.e. the sequence 5`-CGATCG-

3` is considered a palindrome since its reverse complement 3`-GCTAGC-5` reads

the same (David Roy Smith et. al) [20]. Palindromes can be even or odd. An odd

palindrome is one in which there is no asymmetry in the center or mismatch in any

part of the sequence, such that its reverse compliment reads the same as the

original sequence itself.

2.9 Importance of Palindromic sequence:

Palindromic sequences are present in the genomes of all organisms, these motifs

considerably participate in a various cellular processes regulation [24], but on the

other hand they are also responsible for a numerous of genetic instability. At the

nucleic acids levels palindromic sequences tend to create hairpin loops (also

known as stem-loops) [21]. No stochastic distribution of DNA palindromic

patterns have been observed in cancer cells and are attributed to mycogene

amplification [22, 23]. Considering the incidence of palindromes at the genomic

level this thesis implements a class that can identify, locate and count palindromes

in a given sequence in a strictly defined way. According to palindrome counts were

20

significantly different from those in the randomly generated DNA sequences

(dummy sequence) use of real sequence well impact on a case study (discussed in

details in further sections of this thesis).

2.10 Objective:

Implement Qt/C++ class to detect Palindrome Subsequence.

2.11 Material:

 C++ compiler gnu GCC for Unix/mac or VC++ for MS windows

 Qt SDK

 Any Computer platforms (Pc/Mac or UNIX).

2.12 Methods:

Dynamic programing approach.

Dynamic Programing Approach

1- Populate Matrix 2- Extract Palindrome

21

Figure 2.3 Palindromes Finder Populate Matrix Flowchart.

22

Figure 2.4 Palindromes Finder Extract Palindromes Flowchart.

23

2.13 Exact String Matching:

One of the most popular and well-studied problem is the exact string matching.

The task is to find out the occurrences of a particular string pattern in a long text

and according to unprecedented rapidity of biological sequence databases growth

rate the demands for efficient and high performance computational algorithms for

comparing and searching biological sequences have also increased. This thesis will

introduce several traditional algorithms for exact string matching and port them to

Qt/C++ and study their experimental performance and compare their efficiency.

Algorithms of this type are greedy in the sense that the pattern is moved forward

after the first character mismatch of an alignment is observed. Shifts by occurrence

shift may then be unnecessarily short, if shifting is based on a single character. On

the other hand the probability of having the algorithm to enter to the slow loop is

almost always higher when the decision is based on a single character.

2.14 Objective:

Implement Qt/C++ class to solve the exact string matching.

2.15 Material:

 C++ compiler gnu GCC for Unix/mac or VC++ for MS windows.

 Qt SDK.

 Any Computer platforms (Pc/Mac or UNIX).

24

2.16 Methods:

1. Brute Force (Naive) algorithm.

2. Knuth-Morris-Pratt (KMP) algorithm.

3. Boyer-Moore Algorithm.

4. Baeza-Yates–Gonnet (shift-or/and) algorithm.

2.17 Brute Force:

Definitely the first brainstorm solution for solving the exact string matching is a

brute force algorithm (exhaustive search) it‘s a very general and trivial problem

solving technique this method try all possible solutions by enumerating all possible

candidates and checking whether each candidate satisfies the problem's statement.

Then scanning is done from left to right. As shifting is done at each step it gives

less efficiency.

25

Figure 2.5 Brute Force Algorithm Flowcharts.

2.17.1 Brute Force Visualization:

a b a b a b c a b a d d

a b a

a b a

a b a

a b a

26

It‘s obvious the algorithm is simple and redundant e.g. if m=3 the

algorithm will compare positions: 0 1 2 , 1 2 3 etc. to avoid

redundancy a smarter solution is needed and this can be done by using

either Boyer Moor‘s or KMP. Algorithms of this type are greedy in

the sense that the pattern is moved forward after the first character

mismatch of an alignment is observed. Shifts by occurrence shift may

then be unnecessarily short if shifting is based on a single character.

On the other hand, the probability of having the algorithm to enter to

the slow loop is almost always higher when the decision is based on a

single character.

2.18 The Knuth-Morris-Pratt (KMP) Algorithm:

This algorithm was conceived by Donald Knuth and Vaughan Pratt and

independently by James H.Morris in 1977 [25]. Knuth, Morris and Pratt discovered

first linear time string-matching algorithm by analysis of the Naive algorithm. It

keeps the information that Naive approach wasted gathered during the scan of the

text. By avoiding this waste of information it achieves a running time of O (m +

n). The implementation of Knuth-Morris-Pratt algorithm is efficient because it

minimizes the total number of comparisons of the pattern against the input string.

2.18.1 The prefix-function π:

- It preprocesses the pattern to find matches of prefixes of the pattern

with the pattern itself.

- It is defined as the size of the largest prefix of P [0...j - 1] that is also

a suffix of P [1...j].

27

- It also indicates how much of the last comparison can be reused if it

fails.

- It enables avoiding backtracking on the string ―S‖.

28

Figure 2.6 KMP prefix function Flowchart.

29

2.18.2 To compute π for the pattern ‘p’:

Pattern a b a b a c a

Initially: m = length [p] = 7.

 π [1]= 0.

 k=0.

Where m, π [1], and k are the length of the pattern, prefix function and

initial potential value respectively.

Step 1: q = 2, k = 0 and π [2] = 0.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 2: q = 3, k = 0 and π [3] = 1.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0 1

Step 3: q = 4, k = 1 and π [4] = 2.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0 1 2

30

Step 4: q = 5, k = 2 and π [5] = 3.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0 1 2 3

Step 5: q = 6, k = 3 and π [6] = 1.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0 1 2 3 1

Step 6: q = 7, k = 1 and π [7] = 1.

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0 1 2 3 1 1

2.18.3 Find matches algorithm:

Step 1: Initialize the input variables:

 n = Length of the Text.

 m = Length of the Pattern.

 π = Prefix-function of pattern (p).

 q = Number of characters matched.

Step 2: Define the variable:

 q=0, the beginning of the match.

31

Step 3: Compare the first character of the pat tern with first character

of Text. If match i s not found, substitute the value of π[q] to q.

I f match is found, and then increment the value of q by 1.

Step 4: Check whether all the pat tern elements are matched with the

text elements if not, repeat the search process. If yes, print the number

of shifts taken by the pat -tern.

Step 5: look for the next match.

32

Figure 2.7 KMP find matches algorithm.

33

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Execute the KMP algorithm to find whether ‗p‘ occurs in ‗S‘.

Initially: n=size of S=15, m=size of p=7.

Step1: i=1, q=0.

 Comparing p [1] with S [1].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

P [1] does not match with S [1]. ‗P‘ will be shifted one position to the

right.

Step 2: i = 2, q = 0.

 Comparing p [1] with S [2].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

34

Step 3: i = 3, q = 1.

 Comparing p [2] with S [3] p [2] does not match with S [3].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Backtracking on p, comparing p [1] and S [3].

Step 4: i = 4, q = 0.

Comparing p [1] with S[4] p [1] does not match with S[4].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 5: i = 5, q = 0.

Comparing p [1] with S[5].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

35

Step 6: i = 6, q = 1.

Comparing p [2] with S [6] p [2] matches with S [6].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 7: i = 7, q = 2.

Comparing p [3] with S [7] p [3] matches with S [7].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 8: i = 8, q = 3.

Comparing p [4] with S [8] p [4] matches with S [8].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

36

Step 9: i = 9, q = 4.

Comparing p [5] with S [9] p [5] matches with S [9].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 10: i = 10, q = 5.

Comparing p [6] with S [10] p [6] doesn‘t matches with S [10].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Back tracking on p, comparing p [4] with S [10] because after

mismatch

q = π [5] = 3.

Step 11: i = 11, q = 4.

Comparing p [5] with S [11].

String b a c b a b a b a b a c a a b

37

Pattern a b a b a c a

Step 12: i = 12, q = 5.

Comparing p [6] with S [12] p [6] matches with S [12].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Step 13: i = 13, q = 6.

Comparing p [7] with S [13] p [7] matches with S [13].

String b a c b a b a b a b a c a a b

Pattern a b a b a c a

Pattern ‗p‘ has been found to completely occur in string ‗S‘.

The total number of shifts that took place for the match to be found is:

 i - m = 13-7 = 6 shifts.

O (m) - It is to compute the prefix function values.

38

O (n) - It is to compare the pattern to the text.

Total of O (n + m) run time.

2.18.4 Advantage:

 Best known for linear time for exact matching.

 Compares from left to right.

 Shifts more than one position.

 Preprocessing approach of Pattern to avoid trivial

 Comparisons.

 Avoids recomputing matches.

2.18.5 Disadvantages:

 Doesn‘t work as well as the size of the alphabets increases. By

which more chances of mismatch occurs.

2.19 Boyer-Moore Algorithm:

It coined by Bob Boyer and J.Strother Moore in1977 [26], at that time it

considered as the most efficient string matching algorithm. This algorithm

performs comparison task in reverse order from right to the left of the pattern and

did not require the whole pattern to be searched in case of a mismatch (instead of

all previous algorithms which fall under the category of exact string

matching).Since 1977 this algorithm subjected to a quite number of improvements

39

to increase both efficiency and accuracy and as result of that there are too many

variations of this algorithm e.g. Boyer-Moore Smith (MBS), Turbo Boyer Moore

(TBM), Two Way algorithm (TW), Berry Ravindran algorithm (BR), Reverse

Colussi algorithm (RC) and Sunday algorithm .

2.19.1 Analysis of Boyer-Moore Algorithm:

Boyer-Moor algorithm is one of heuristic (machine learning)

algorithms and performers its search task by matching the pattern with

text from right to the left and shifting the pattern from left to right the

shifting procedure governed by rules :

 If mismatch reported use knowledge of the mismatched text

character to skip alignments and this called Bad character

Heuristic (Easy Case).

 If some charters matched use knowledge of the matched

characters to skip alignments and this called Good suffix

Heuristic.

 Try alignments in one direction, and then try character

comparisons in opposite direction (long skip).

40

2.19.2 Bad character Heuristic:

2.19.3 Good suffix Heuristic:

41

42

Figure 2.8 Boyer-Moor find matches algorithm.

43

2.19.4 Advantages:

 The both good-suffix and bad-char combined provides a good shift value as

maximum of two is taken as shift value.

2.19.5 Disadvantages:

 The preprocessing of good-suffix is complex to implement and understand.

 Bad-char of mismatch character may give small shift, if mismatch after

many matches.

44

3 - Chapter Three:

 String Matching Evaluation Methods

Identifying patterns among biological sequences was the title for a lot of researches

in bioinformatics. Evaluation of string matching or approximate string matching

(often colloquially referred to as fuzzy string searching) is performed by

implementations of different algorithms on the theoretical side, some of the famous

algorithms used in sequences comparison such as: Longest Common Substring

(LCS), Subsequence (LCSS), Global alignment (Needleman-Wunsch) and Local

alignment (Smith-Waterman) algorithms. Many biological machines share very

similar gene sequences while some regions of sequences vary from spice to spice

or even among individuals from the same domain. The comparison committed by

recognizing the regions of similarity that may be a consequence of functional,

structural, or evolutionary relationships between the sequences. i.e. the similarity

shows that the sequences share a common ancestral sequence. As a result similar

sequences have similar functionality. Such sequences are said to be homologous.

Furthermore the knowledge of a DNA sequence and gene analysis can be used in

several biological, medical and agricultural research fields such as: possible

disease or abnormality diagnoses, forensics, pattern matching, biotechnology, etc.

The analysis and comparison studies for DNA sequences can be used to detect

possible errors or abnormality in a DNA sequence and predict the function of a

specific gene and compare it with other similar genes from same or different

organisms. Each newly discovered DNA sequence is classified according to its

Similarity with known DNA sequences.

45

3.1 Sequence Alignment:

Sequence alignment process means put two or more sequences above each other

and study the similarity between them this study done in terms of quantity. These

comparisons studies can be used to extract information such as: detect homology,

evolutionary divergence, predict of function, origin of diseases and model 3D-

structure.There are two methods to do alignment either pairwise or multiple

sequence alignment.

3.2 Biological Motivation

 Comparing or retrieving DNA/Protein sequences in databases.

 Comparing two or more sequences for similarities.

 Finding patterns within a protein or DNA sequence.

 Tracking the evolution of sequences.

Types of sequence
alignment

Multiple
sequence
alignment

Pairwise
sequence
alignment

46

3.3 Terminology:

3.3.1 Identity:

Proportion of pairs of identical residues between two aligned

sequences. Generally expressed as a percentage. This value strongly

depends on how the two sequences are aligned.

3.3.2 Similarity:

Proportion of pairs of similar residues between two aligned sequences.

If two residues is similar is determined by a substitution matrix.

This value also depends strongly on how the two sequences are

aligned, as well as on the substitution matrix used.

3.3.3 Homology:

Two sequences are homologous if and only if they have a common

ancestor. There is no such thing as a level of homology (It's either yes

or no).

3.4 Pairwise Alignment:

Pairwise sequence alignment methods are used to find the best matching piecewise

either local or global alignments of two query sequences. This method

implemented only between two sequences at a time. This method is efficient and

often used between sequences that do not need extreme precision e.g. query

sequences with high similarity. There are four major methods to do pairwise

sequence alignment:

47

 Manually (by using white board or any word processing application).

 dot plot method this method introduced by Gibbs and McIntyre 1970 [28]

The idea of this method is:

 Sequence (A) is listed across the top of the matrix and the other (B) is

listed down the left side.

 Starting from the first character in B, one moves across the page

keeping in the first row and placing a dot in many columns where the

character in A is the same.

 The process is continued until all possible comparisons between A

and B is made.

 Any region of similarity is revealed by a diagonal row of dots.

 Isolated dots not on diagonal represent random matches.

Figure 3.1 a simple dot matrix comparison of two DNA sequences AGCTAGGA

and GACTAGGC [29].

 Dynamic Programming methods (Rigorous mathematical) this approach is

slow but optimal and uses two algorithms Needleman-Wunsch algorithm

(for global pairwise alignment) and Smith-Waterman algorithm (for local

48

pairwise alignment). These two algorithms will be discussed in details in this

thesis.

 Heuristic algorithms (k-tuple method) this approach is faster but

approximate and uses either BLAST or FASTA.

3.5 Multiple Sequence Alignment:

It‘s an extension of pairwise alignment in this approach more than two

sequences are involved at a time. Multiple alignments are often used in

phylogenetic analysis, detection of homology between a newly sequenced gene

and an existing gene family, prediction of protein structure and demonstration

of homology in multigene families. The most widely used progressive

alignment algorithm is currently CLUSTALW.

3.6 Pairwise Sequence Alignment by Dynamic Programming:

As mentioned before in section 3.4 there is more than one method for performing

Pairwise Sequence Alignment. This thesis will focus on DP (Dynamic

Programming) methods which first introduced by Richard Bellman in 1953 to

study multistage decision problems [30]. The idea behind this style of problem

solving is breaking down the big problem to smaller sub problems (often many of

these sub problems are really the same) by solving each sub problems only once

this will reducing the number of computations. This approach is especially useful

when the number of repeating sub problems grows exponentially as a function of

the size of the input. In this method each pair of characters is compered in the two

49

sequences and generates an alignment. This alignment will include matched and

mismatched characters and gaps in the two sequences that are positioned so that

the number of matches between identical or related characters is the maximum

possible. The dynamic programming algorithm provides a reliable computational

method for aligning DNA and protein sequences. The method has been proven

mathematically to produce the best or optimal alignment between two sequences

under a given set of match conditions. Optimal alignments provide useful

information to biologists concerning sequence relationships by giving the best

possible information as to which characters in a sequence should be in the same

column in an alignment and which are insertions in one of the sequences (or

deletions on the other). This information is important for making functional,

structural and evolutionary predictions on the basis of sequence alignments. There

are two important algorithms used in DP pairwise sequence alignment:

 Needleman and Wunsch Algorithm (for pairwise global sequence

alignment).

 Smith and Waterman algorithm (for pairwise local sequence alignment).

3.7 Global Alignment (Needleman-Wunsch Algorithm):

 The dynamic programming method for global sequence alignment was described

by Needleman and Wunsch (1970) [31] and proved mathematically and extended

to include an improved scoring system by Smith and Waterman [32].This problem

focusing on how to find the best alignment based on measurements of similarity

which uses certain scoring functions(table 3.1). The optimal score at each matrix

position is calculated by adding the current match score to previously scored

positions and subtracting gap penalties if applicable. Each matrix position may

50

have a positive or negative score or 0. The Needleman-Wunsch algorithm will

maximize the number of matches between the sequences along the entire length of

the sequences. Gaps may also be present at the ends of sequences in case there is

extra sequence left over after the alignment. These end gaps are often but not

always given a gap penalty.

Case Score

Match +1

Mismatch -1

Gap -2

Table 3.1 scoring function.

To build up an optimal alignment using previous solutions for optimal alignments

of smaller subsequences for given two sequences x = (x1, x2, . . . , xi) and y = (y1,

y2, . . . , yj).

in which F(i, j) equals the best score of the alignment of the two prefixes (x1,

x2, . . . , xi) and (y1, y2, . . . , yj).This will be done recursively by setting F(0,

0) = 0 and then computing F(i, j) from F(i-1, j-1), F(i-1, j) and F(i, j-1).

51

Figure 3.2 Calculate Best Score.

For example to align two sequences ACCTGA and AGCTA the scoring matrix

will be as table 3.2. After the matrix fill step the maximum alignment score for the

two test sequences is 1. The traceback step determines the actual alignment(s) that

result in the maximum score (table 3.3).

 - A C C T G A

- 0 -2 -4 -6 -8 -10 -12

A -2 1 -1 -3 -5 -7 -9

G -4 -1 0 -2 -4 -4 -6

C -6 -3 0 1 -1 -3 -5

T -8 -5 -2 -1 2 0 -2

A -10 -7 -4 -3 0 1 1

Table 3-2 Scoring Matrix.

52

 - A C C T G A

- 0 -2 -4 -6 -8 -10 -12

A -2 1 -1 -3 -5 -7 -9

G -4 -1 0 -2 -4 -4 -6

C -6 -3 0 1 -1 -3 -5

T -8 -5 -2 -1 2 0 -2

A -10 -7 -4 -3 0 1 1

Table 3-3 Traceback Step.

And according to traceback step the best alignment for the two sequences will be:

 A C C T G A

A G C T - A

3.8 Local Alignment (Smith-Waterman Algorithm):

A modification of the dynamic programming algorithm for sequence alignment

provides a local sequence alignment giving the highest scoring local match

between two sequences [33]. Local alignments are usually more meaningful than

global matches because they include patterns that are conserved in the sequences.

They can also be used instead of the Needleman-Wunsch algorithm to match two

sequences that may have a matched region, that is only a fraction of their lengths,

that have different lengths, that overlap or where one sequence is a fragment or

subsequence of the other. The rules for calculating scoring matrix values are

slightly different the most important differences being (1) the scoring system must

include negative scores for mismatches and (2) when a dynamic programming

scoring matrix value becomes negative that value is set to zero which has the effect

53

of terminating any alignment up to that point. The alignments are produced by

starting at the highest scoring positions in the scoring matrix and following a

Trace path from those positions up to a box that scores zero.

Figure 3.3 Sequence Alignment Flowchart.

54

3.9 Substitution matrices:

 In proteins some mismatches are more acceptable than others.

 Substitution matrices give a score for each substitution of one amino acid

by another.

Figure 3.4 Example Of Substitution Matrix [34].

55

3.9.1 Different kind Of Matrices:

 PAM series :

Percent Accepted Mutation (Dayhoff M., 1968, 1972, 1978)[34]. A unit

introduced by Dayhoff et al [34]. To quantify the amount of evolutionary

change in a protein sequence. 1.0 PAM unit is the amount of evolution

which will change on average 1% of amino acids in a protein sequence. A

PAM(x) substitution matrix is a look-up table in which scores for each

amino acid substitution have been calculated based on the frequency of that

substitution in closely related proteins that have experienced a certain

amount (x) of evolutionary divergence:

 Based on 1572 protein sequences from 71 families.

 Old standard matrix: PAM250.

 BLOSUM series:

Blocks Substitution Matrix (Henikoff S. & Henikoff JG., PNAS, 1992) [34].

A substitution matrix in which scores for each position are derived from

observations of the frequencies of substitutions in blocks of local alignments

in related proteins. Each matrix is tailored to a particular evolutionary

distance. In the BLOSUM62 matrix, for example the alignment from which

scores was derived were created using sequences sharing no more than 62%

identity. Sequences more identical than 62% are represented by a single

sequence in the alignment so as to avoid over-weighting closely related

family members [34]:

 Based on alignments in the BLOCKS database.

 Standard matrix: BLOSUM62.

56

3.9.2 Limitations:

 Substitution matrices do not take into account long range

interactions between residues.

 They assume that identical residues are equal (whereas in real

life a residue at the active site has other evolutionary constraints

than the same residue outside of the active site).

 They assume evolution rate to be constant.

3.10 Objective:

Implement Qt/C++ class for Similarity measure.

3.11 Material:

 C++ compiler gnu GCC for Unix/mac or VC++ for MS windows

 Qt SDK

 Any Computer platforms (Pc/Mac or UNIX).

3.12 Methods:

- Dynamic programing approach:

 Global alignment (Needleman-Wunsch algorithm).

 Local alignment (Smith-Waterman algorithm).

57

4 - Chapter Four

 Case Study and Results

4.1 Microsatellite Repeats Case Study:

Apply FindMicrosatelliteRepeats on two types of Trinucleotide repeat disorder

such as FXN gene with NCBI Reference Sequence: NM_181425.2 [35] and FMR1

(fragile X mental retardation 1) with NCBI Reference Sequence: L19493.1 [36]
:

Motif

Start Position

Frequency

Length

MS Sequence

TA 9 3 2 TATATA

TT 333 3 2 TTTTTT

TT 340 3 2 TTTTTT

AT 547 3 2 ATATAT

TG 687 4 2 TGTGTGTG

AA 721 3 2 AAAAAA

TT 745 3 2 TTTTTT

TT 883 3 2 TTTTTT

TTGTTT 931 3 6 TTGTTTTTGTTTTTGTTT

GA 981 4 2 GAGAGAGA

GA 1037 3 2 GAGAGA

58

TT 1138 5 2 TTTTTTTTTT

GA 1207 3 2 GAGAGA

AT 1312 3 2 ATATAT

TT 1373 4 2 TTTTTTTT

TT 1382 3 2 TTTTTT

TT 1395 3 2 TTTTTT

TT 1423 3 2 TTTTTT

TT 1434 5 2 TTTTTTTTTT

CA 1782 3 2 CACACA

AT 1938 3 2 ATATAT

TG 2339 3 2 TGTGTG

Table 4.1 FRM1 Microsatellite repeats Search Result.

Motif

Start Position

Frequency

Length

MS Sequence

CCCAG 265 3 5 CCCAGCCCAGCCCAG

CT 483 3 2 CTCTCT

TT 544 3 2 TTTTTT

TT 934 3 2 TTTTTT

GTT 940 5 3 GTTGTTGTTGTTGTT

TT 957 4 2 TTTTTTTT

TT 1070 3 2 TTTTTT

AA 1157 3 2 AAAAAA

TG 1499 3 2 TGTGTG

AT 1506 4 2 ATATATAT

59

AA 1560 3 2 AAAAAA

AA 1589 3 2 AAAAAA

AG 1707 3 2 AGAGAG

AG 1808 3 2 GAGAGA

TA 1924 3 2 TATATA

AA 2128 3 2 AAAAAA

AAT 2284 3 3 AATAATAAT

ATA 2299 5 3 ATAATAATAATAATA

AA 2618 7 2 AAAAAAAAAAAAAA

AA 2834 3 2 AAAAAA

AA 2842 4 2 AAAAAAAA

TAA 2856 3 3 TAATAATAA

TT 2898 3 2 TTTTTT

TT 2918 3 2 TTTTTT

AA 3403 3 2 AAAAAA

GG 3483 3 2 GGGGGG

AAAT 3558 5 4 AAATAAATAAATAAATAAAT

TG 3658 3 2 TGTGTG

TT 3823 4 2 TTTTTTTT

TT 3841 3 2 TTTTTT

TT 3978 3 2 TTTTTT

GT 4081 3 2 GTGTGT

CT 4191 3 2 CTCTCT

GT 4219 3 2 GTGTGT

TT 4316 7 2 TTTTTTTTTTTTTT

60

TG 4765 3 2 TGTGTG

AC 4821 3 2 ACACAC

TT 5025 3 2 TTTTTT

AA 6027 3 2 AAAAAA

TA 6078 3 2 TATATA

TC 6548 3 2 TCTCTC

GG 6853 3 2 GGGGGG

CT 6901 3 3 CTCCTCCTC

CA 7086 3 2 CACACA

Table 4.2 FXN Microsatellite repeats Search Result.

Figure 4.1 BioQt Microsatellite repeats finder.

61

4.2 Palindromes Case Study:

 Test mitochondrial genome with telomeres of Polytomella magna

mitochondrion with GenBank accession KC733827 [37] against both BioQt

palindrome Algorithms.

 Test the Dummy sequence against both BioQt palindrome Algorithms :

4.2.1 Results:

4.2.1.1 Experiment 1:

 dynamic programing approach :

Test KC733827 sequence against BioQt dynamic programing

Palindrome finder algorithm with minimum palindrome length 10 and

maximum length 20:

Palindromic sequence Position

AGTCCGGACT 617

GGATCGATCC 708

ACTTTTAAAGT 1021

ATTCTCAGAAT 1100

TGAGTACTCA 1119

TTTTAATTTAAAA 1729

AAGCTAGCTT 2703

CATGTTTAAACATG 2720

AACAATGCCATGATGATGATTATTACGACACAACAACACCGCGCTTGA

CGGCGGCGGATGGATGCCGCGATCAGACGTTCAACGCCCACGTAACGT

AACGCAACGTAACCTAACGACACTGTTAACGGTACGAT

62

GTTAATCATTAA 2762

TTTTAATTTAAAA 4320

Table 4.3 KC733827 Palindromes.

 Naïve Algorithm: Crashed down.

4.2.1.2 Experiment 2:

 dynamic programing approach :

Test dummy sequence against BioQt dynamic programing Palindrome

finder algorithm with minimum palindrome length 6 and maximum

length 20:

Palindromic sequence Position

ATGCCAT 4

CATGATG 8

CGTTCAACG 75

ACGTAACGT 87

CGTAACG 93

ACACTGT 115

GTTAAC 120

Table 4.4 Dummy Sequence Palindromes.

 Naive Algorithm :

Only one palindrome detected at position 120 GTTAAC.

63

Figure 4.2 Palindrome Finder Dynamic Approach.

Figure 4.3 Palindrome Finder Naive Algorithm.

64

4.3 Exact String Matching:

Test mitochondrial genome with telomeres of Polytomella magna mitochondrion

with GenBank accession KC733827 [37] against Knuth–Morris–Pratt algorithm(

used by BioQt for exact string matching) and compare the execution time with

other exact string matching algorithms Brute Force , Boyer Moor and Shift-or .

4.3.1 Experiment:

Using the sequence TGAGAT as pattern.

4.3.2 Results:

All algorithms give the same result:

The pattern TGAGAT matched at text indices 1644, 1849, 2219, 4235, 4440 and

4810.

Name of

algorithms

Numbers of

running time

Brute Force Boyer Moor Knuth–Morris–

Pratt

Shift-or

1 795995 364783 344048 874327

2 804442 516072 324848 802906

3 774492 513000 523367 529895

4 769500 336752 496105 809818

5 773724 334832 491881 772956

6 777180 513768 323313 828249

7 773724 540647 329456 803674

8 767580 342128 322929 756445

9 796763 556006 337520 761052

10 803290 342896 338288 773724

Table 4.5 Exact String Matching.

65

Figure 4.5 Brute Force Algorithm running time.

Figure 4.6 Boyer Moor Algorithm running time.

740000

750000

760000

770000

780000

790000

800000

810000

1 2 3 4 5 6 7 8 9 10

Brute Force Algorithm

Brute Force

Time in Nanoseconds

Number of
repeated trials

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10

Boyer Moor Algorithm

Boyer Moor

Time in Nanoseconds

Number of
repeated
trials

66

Figure 4.7 Knuth-Morris Algorithm running time.

Figure 4.8 Shifts-Or Algorithm running time.

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10

Knuth–Morris–Pratt Algorithm

Knuth–Morris–Pratt

Time in Nanoseconds

Number of
repeated trials

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 3 4 5 6 7 8 9 10

Shift-Or Algorithm

Shift-or

Time in Nanoseconds

Number of
repeated
trials

67

Figure 4.9 String Matching Algorithm running time.

Figure 4.10 KMP Algorithm Output.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 3 4 5 6 7 8 9 10

Brute Force

Boyer Moor

Knuth–Morris–Pratt

Shift-Or

Number of repeated
trials

Time in Nanoseconds.

68

4.4 Sequence Alignment:

Test two dummy sequences against Sequence Alignment Algorithms:

 Hirschberg's Algorithm (LCS).

 Needleman–Wunsch algorithm

 Smith-Waterman Algorithm

And compare the execution time.

4.4.1 Experiment:

Using two dummy sequences:

4.4.2 Results:

Figure 4.12 Hirschberg's Algorithm Output alignment.

s1=TTGTCAGATTCACCAAAGTTGAAATGAAGGAAAAAATGCTAAGGGCAGCC

s2=AGAGAGAGGTCAGGTTACCCACAAAGGGAAGCCCATCAGACTAACAGCGG

69

Figure 4.13 Needleman–Wunsch algorithm Output alignment.

Figure 4.14 Smith-Waterman Algorithm Output alignment.

70

Name of

algorithms

Numbers of

running time

Hirschberg's

Algorithm

(LCS)

Needleman–

Wunsch

algorithm

Smith-

Waterman

Algorithm

1 7179236 2366456 2314619

2 5582271 1955983 2316923

3 5668282 1937936 2277757

4 5566528 1892627 3778727

5 8565780 1878420 4030232

6 9563355 1899923 3731114

7 5701689 1933329 2354936

8 5696313 1876116 2305787

9 5600318 1945616 2310395

10 5661371 1891091 2275069

Table 4.6 Sequence Alignment.

Figure 4.15 Hirschberg's Algorithm running time.

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10

Hirschberg's Algorithm (LCS)

Hirschberg's Algorithm
(LCS)

Number of
repeated trials

Time in Nanoseconds

71

Figure 4.16 Needleman–Wunsch algorithm running time.

Figure 4.17 Smith-Waterman Algorithm running time.

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6 7 8 9 10

Needleman–Wunsch algorithm

Needleman–Wunsch
algorithm

Number of
repeated trials

Time in Nanoseconds

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1 2 3 4 5 6 7 8 9 10

Smith-Waterman Algorithm

Smith-Waterman
Algorithm

Number of
repeated trials

Time in Nanoseconds

72

Figure 4.18 comparison between alignment algorithms running time.

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10

Hirschberg's Algorithm
(LCS)

Needleman–Wunsch
algorithm

Smith-Waterman Algorithm

Number of repeated
trials

Time in Nanoseconds

73

5 - Chapter Five:

 Conclusion and Future work

In this thesis the evaluation of code implementation has been successfully done for

all algorithms: exact string matching problem, Microsatellite Repeats, Palindromic

sequences, longest common subsequence and Needleman-Wunsch and Smith-

Waterman sequence alignment. . In this implementation we use C++ language and

the Qt SDK 4.8 with the GCC 4.8 compiler to test the algorithms under the Centos

Linux version 6 Operating system with RAM 8GB. Evaluating the same

sequences on different algorithms may show different results. While some of the

differences are shown to be expected and are part of the different default

considerations or interpretations of those algorithms. Implementation of dynamic

programing algorithm to compare sequences shows remarkable waste of time

compared to BLAST or FASTA (this is accepted due to nature of algorithms).

Furthermore for future work complete the classes deal with open reading frames,

restriction enzyme, PCR primer design and database file handler.

74

6 - Refrences:
1- Margaret O. Dayhoff. Atlas of Protein Sequence and Structure: Supplement,

Volume 3. National Biomedical Research Foundation.(1978).

2- Neil C.Jones and Pavel A.Pevzner. An introduction to:bioinformatics

algorithms. The MIT Press.(2004).

3- Dinesh Bhatia.Medical Informatics.PHI Learning Pvt. Ltd.(2015).

4- Jasmin Blanchette; Mark Summerfield. C++ GUI Programming with Qt 4,

Second Edition. Prentice Hall. (2008).

5- The Qt Company and ESA to develop 3D mapping and visualization

software to support the Rosetta science operations. December 18, 2014.

Helsinki, Finland. https://www.qt.io/qt-news/qt-company-esa-develop-3d-

mapping-visualization-software-support-rosetta-science-operations/.

6- DreamWorks Animation keynote at Qt Developer Days. September 7th,

2010. https://blog.qt.io/blog/2010/09/07/dreamworks-animation-keynote-at-

qt-developer-days/.

7- Peter Kreußel .Lucasfilm Goes for Trolltech‘s Qt. Oct 16, 2007.

http://www.linux-magazine.com/Online/News/Lucasfilm-Goes-for-

Trolltech-s-Qt.

8- Gary Towsend. Panasonic Avionics Inflight Entertainment. https://mar-eu-1-

pa6s6zn8.qtcloudapp.com/case-panasonic/.

9- Qt on Android. https://www.qt.io/case-adeneo-embedded/.

10- David L.Nelson and Michael M.Cox. Lehninger Principles of Biochemistry,

sixth edition. Freeman, W. H. & Company.(2012).

11- Barbara Hansen and Lynn Jorde. USMLE Step 1 - Biochemistry and

Medical Genetics Lecture Notes. Kaplan.(2013).

12- Mona Snigh .Topics in computational molecular biology. lecture2. (1999).

https://www.qt.io/qt-news/qt-company-esa-develop-3d-mapping-visualization-software-support-rosetta-science-operations/
https://www.qt.io/qt-news/qt-company-esa-develop-3d-mapping-visualization-software-support-rosetta-science-operations/
https://blog.qt.io/blog/2010/09/07/dreamworks-animation-keynote-at-qt-developer-days/
https://blog.qt.io/blog/2010/09/07/dreamworks-animation-keynote-at-qt-developer-days/
http://www.linux-magazine.com/Online/News/Lucasfilm-Goes-for-Trolltech-s-Qt
http://www.linux-magazine.com/Online/News/Lucasfilm-Goes-for-Trolltech-s-Qt
https://mar-eu-1-pa6s6zn8.qtcloudapp.com/case-panasonic/
https://mar-eu-1-pa6s6zn8.qtcloudapp.com/case-panasonic/
https://www.qt.io/case-adeneo-embedded/

75

13- Ben Langmead. Strings and exact matching. johns hopkins university

whiting school of engineering computer science.(2014).

14- Litt, M.; Luty, J.A. A hypervariable microsatellite revealed by in vitro

amplication of a dinucleotide repeat within the cardiac muscle actin gene.

Am. J. Hum. Genet. (1989).

15- Peter D.Turnpenny and Sian Ellard.Emery's Elements of Medical

Genetics,13th. ed.Elsevier.(2007).

16- Gous Miah, Mohd Y.Rafii et.al.A Review of Microsatellite Markers and

Their Applications in Rice Breeding Programs to Improve Blast Disease

Resistance.Int. J. Mol. Sci. 2013, 14, 22499-22528;

doi:10.3390/ijms141122499.

17- Hans Ellegren.Microsatellites: simple sequences with complex

evolution.Nature Reviews Genetics 5, 435-445 (June 2004) |

doi:10.1038/nrg1348.

18- E.Yu.Siyanova and S.M.Mirkin.Expansion of Trinucleotide

Repeats.Department of Molecular Genetics, University of Illinois at

Chicago, Chicago, IL 60607, USA.(October 2, 2000).

19- Duncan FISHWICK, M.A.An Early Christian Cryptogram.University of St.

Michael‘s College, Toronto.CCHA, Report, 26 (1959), 29-41.

20- David Roy Smith et al.Palindromic Genes in the Linear Mitochondrial

Genome of the Nonphotosynthetic Green Alga Polytomella magna.Genome

Biol Evol. 2013; 5(9): 1661–1667.[PMCID: PMC3787674].

21- Horace R. Drew, Denise Lewy, Jason Conaty, Keith N. Rand, Philip

Hendry and Trevor Lockett.RNA hairpin loops repress protein synthesis

more strongly than hammerhead ribozymes.CSIRO Division of Molecular

Science, North Ryde, Australia.Eur. J. Biochem. 266, 260±273 (1999).

22- Choi and C.Q. DNA palindromes found in cancer.Genome Biology.(2005).

76

23- Hisashi Tanaka,Donald A.Bergstrom,Meng-Chao Yao and Stephen

J.Tapscott.Widespread and nonrandom distribution of DNA palindromes in

cancer cells provides a structural platform for subsequent gene

amplification.Nature Genetics 37, 320 - 327 (2005) .

24- Lisnic B,Svetec IK,Saric H,Nikolic I and Zgaga Z.Palindrome content of

the yeast Saccharomyces cerevisiae genome.Curr Genet. 2005

May;47(5):289-97. Epub 2005 Mar 18.

25- D.E. Knuth, J.H. Morris, Jr., and V.R. Pratt: Fast pattern matching in

strings. SIAM Journal on Computing.323–350(1977).

26- R.S. Boyer, J.S. Moore, A fast string searching algorithm,Communication

of the ACM, Vol. 20, No. 10.(1977).

27- Ben Langmead.Boyer-Moore.john hopkins whiting school of engineering.[

engineering.jhu.edu].

28- Gibbs, A. J. and McIntyre, G. A. (1970) European J. Biochem. 16, 1-11.

29- David Mount.Bioinformatics: Sequence and Genome Analysis, Second

Edition.(2004).Cold Spring Harbor Laboratory Press.

30- Bioinformatics ALGORITHMS:Techniques and Applications.(2008).Ion

I.Mandoiu & Alexander Zelikovsky.John Wiley & Sons, Inc.

31- C. S. B Needleman, C. D. Wunsch. (1970).A general method applicable to

the search for similarities in the amino acid sequence of two proteins.

Journal of molecular biology,vol. 48, no. 1, pp. 443-453.

32- Smith T.F. & Waterman M.S. (1981).Identification of common molecular

subsequences Journal of molecular biology.147: 195–197.

33- Smith, Temple F and Waterman, Michael S. (1981) ―Identification of

Common Molecular Sub sequences‖. Journal of Molecular Biology 147:

195–197.

77

34- Pairwise sequence alignments;Volker Flegel,Vassilios Ioannidis;VI -

2004;http://www.ch.embnet.org/CoursEMBnet/Zurich04/slides/pairwise.pdf.

35- http://www.ncbi.nlm.nih.gov/nuccore/239787185?report=genbank.

36- http://www.ncbi.nlm.nih.gov/nuccore/L19493.1.

37- http://www.ncbi.nlm.nih.gov/nuccore/KC733827.

http://www.ncbi.nlm.nih.gov/nuccore/239787185?report=genbank
http://www.ncbi.nlm.nih.gov/nuccore/L19493.1
http://www.ncbi.nlm.nih.gov/nuccore/KC733827

